
Enabling Cognitive Architectures for UAV Mission Planning

Jon C. Russo, Mohammed Amduka, and Boris Gelfand, Lockheed Martin Advanced Technology Laboratories
{jrusso, mamduka, bgelfand}@atl.lmco.com

Dr. Keith Pedersen, Lockheed Martin Aeronautics
keith.pedersen@lmco.com

Dr. Richard Lethin and Dr. Jonathan Springer, Reservoir Laboratories
{lethin, springer}@reservoir.com

Dr. Rajit Manohar, Cornell University
rajit@cs.cornell.edu

Dr. Rami Melhem, University of Pittsburgh
melhem@cs.pitt.edu

Abstract1

The operational performance desired for autonomous
vehicles in the battlefield requires new approaches in
algorithm design and computation. Our design,
Polymorphic Cognitive Agent Architecture (PCAA), is a
hardware-software system that supports the requirements
for implementing a dynamic multi-unmanned aerial vehicle
(UAV) mission planning application using cognitive
architectures. We describe the requirements for our
application, and discuss the challenges of using current
“non-cognitive” algorithms to solve this problem and the
reasons this motivates our experiment. We describe our
system to integrate multiple cognitive architectures. We
identify the cognitive kernels used in the cognitive and non-
cognitive implementation and system software and
hardware features to support them. We also discuss
observations and plans for further development and
evaluation.

Dynamic Multi-UAV Mission Planning
The problem of coordinating multiple UAVs has been
considered by several authors [9]. Balancing targets and
threats, capabilities and constraints, and policy/tactical
issues must be factored into the planning problem. For
example, planning must account for constraints such as
separating ingress and egress points, maximizing covertness
(by minimizing radar cross-section during transit), and
avoiding flying long straight-and-level route segments.
Fielded systems for manned aircraft static planning work
roughly as follows, in an algorithmic manner.
Implementations typically represent as many of these
considerations as possible as costs on the edges of a graph,
where the nodes in the graph correspond to particular
discrete choices of position, orientation, or controls. The
presence or absence of an edge indicates the physical
feasibility of transition between the nodes. Considerations
that cannot be framed as costs overlay the graph, so that the

This work was sponsored by DARPA/IPTO in the Architectures for
Cognitive Information Processing program; contract number FA8750-04-
C-0266. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited).

planning problem is essentially constrained shortest path
finding. Good polynomial time algorithms exist for shortest
path finding. The facts that the graphs are large, have high
dimensionality, and the computation of edge costs is
compute intensive (e.g., for radar cross section) are by
themselves sufficient to make this problem challenging, but
the presence of overlaying constraints makes the problem
NP-hard. Consequently, to field systems, developers
simplify the problem by phasing the optimization through
different subsets of costs and constraints that progressively
refine approximate plans and by paying careful attention to
graph construction (e.g., excluding regions that are
unreachable due to fuel constraints).

When this solution is extended to the multi-UAV domain,
the requirements for computation grow exponentially. The
major contributor to this growth is that the dimensionality
of the planning space is proportional to the number of
UAVs; thus, the size of the graph to be searched grows
exponentially with the number of UAVs. This is further
multiplied by the concurrent desire to plan over larger
physical regions, at finer granularities, and with more
complicated constraints arising from considerations such as
route deconfliction and more complex tactics.

Furthermore, imposing the requirement that the system be
able to re-plan dynamically (for example, in the face of
pop-up threats or in-flight re-tasking) implies that such
planning be completed in seconds. Our estimates are that
the power dissipation to compute plans in such time using
current problem framing techniques and conventional
processor technology is in the range of tens of Megawatts.
Such an approach is impractical, either for on-board
processing or for external processing in ground stations.

Cognitive Approach
We are attempting to apply techniques arising from the
“cognitive architecture” research program [4] to the
problem of UAV path finding. Cognitive architectures draw
from our increasing body of experimental observations of
human cognition and theories about intelligence. A
cognitive architecture unifies these insights and theories
and renders them in computer based models. These models
can exhibit aspects of intelligent behavior such as

reasoning, learning, and decision making. One objective of
research into cognitive architectures is that such
intelligence could exhibit generalized problem solving
ability. While the quest for generalized problem solving
ability is an early facet in the history of artificial
intelligence [6], the accumulated body of results in this
program is attracting a number of researchers facing the
need for complex automated problem solving in diverse
fields (e.g., [2]).

Cognitive Framework
We have chosen to experiment with the SOAR [7], ACT-R
[1], and swarming [8] models of cognition. SOAR is based
on production systems in service of explicit goals; in each
execution cycle, all productions whose precondition is
enabled by the content of memory will fire, potentially
updating the working memory or rule base. SOAR has
designed-in mechanisms for resolving conflicts and
integrating knowledge from multiple sources. ACT-R
emphasizes reactive problem solving through expertise-
based pattern matching. In our system, ACT-R also
provides the interface between the macro-cognitive
symbolic operations of SOAR and the proto-cognitive sub-
symbolic operations provided by swarming computation.
Using hierarchical ant clustering, swarming implements
perception processing, extracting cognitive elements from
massive amounts data.

Discussion of Cognitive Approach
There is an apparent correspondence between our chosen
cognitive frameworks and the UAV mission planning
problem as framed algorithmically that arguably should
provide problem simplification. For example, swarming is a
well-known meta-heuristic used in the solution of graph
problems. The chunking operation in SOAR is an
Explanation-Based Learning procedure that is analogous to
the conflict clause generation procedure found in fast
constraint solvers. The caching and approximate matching
in ACT-R can leverage previous knowledge of good
solutions that simplify the generation of new plans. But we
are more ambitious in our desire to apply the cognitive
frameworks; for example, we would like to investigate
having SOAR reasoning about the problem in terms of an
upper ontology for high level problem simplification.

Our architecture is also an experiment into the fusion of the
different cognitive models into one intelligence; we have
prototyped a cognitive markup language (mCML) to
implement communication between the intelligences.
Finding ways to use the heuristics power of swarming or
ACT-R to make the reasoning in SOAR tractable is just one
of the numerous opportunities for further investigation of
such a configuration. Furthermore, we would like to
investigate integrating other types of cognitive models into
the fusion, such as for probabilistic reasoning to model
uncertainty or subsumption architectures for greater
integration of the UAV control system.

Another challenge is the degree and manner of integration
of the existing algorithmic approaches to mission planning

with the cognitive architectures. It is an open question
which is better: a fine-grained fusion of such techniques
(implementing the search directly in one of our
frameworks) versus coarse partitioning (coupling a highly
tuned constrained A* solver with a highly tuned
implementation of a cognitive architecture). An
implementation of A* in our cognitive frameworks, for
example, is attractive from the point of view of a seamless
transition between that path finding and the high level
reasoning, but it could be computationally very inefficient.

Computing Requirements
We have identified the following cognitive kernels as being
components of the UAV mission planning problem:
minimum-cost path planning, constraint satisfaction,
assignment problems, clustering, TSP solver, knowledge-
based reasoning, and probabilistic reasoning. Mindful of the
fact that examining these kernels in isolation gives only
partial insight into the types of system and hardware archi-
tectures needed to facilitate such processing in a complete
application implementation, we describe below three of
several approaches we have investigated for such kernels.

Hardware Support for ACT-R

ACT-R employs memory intensive operation for expertise-
based solution using three logical memory compartments:
the declarative memory is used to symbolically represent
compositional data, the procedural memory stores
information for reaction in dynamic problem solving, and
the working memory maintains the current operational
context. Each memory type operates on similar principles
for matching. The match operation is inexact in that the
data associated with the closest key in memory (according
to a definable distance metric) is retrieved. The similarity
function, which compares an input operand to each content
row (or chunk) of memory may be further compounded by
factors such as decay or practice.

Our hardware designs for ACT-R leveraged the inherent
parallelism in the independent comparisons of chunks with
input operands. Figure 1 shows the results of speedup
versus number of Power PCs cooperating on the match
operation. Speedups for ACT-R (1000 chunks)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of Processors

S
pe

ed
up

Series1

Figure 1: Speedup of ACT-R versus number of processors

Further speedup (up to two orders of magnitude) was
achieved by using a custom inexact matching architecture
(implemented in a Xilinx Virtex-2 FPGA) shown in Figure
2.

F

F

F

F

OperandOperand

<

<

<

Group
Best

Pre-result
1

Pre-result
2

…

F

F

F

F

<

<

< …

Pre-result
P

Pipeline Outputs K=N/G Preliminary Results

OperandOperand

v

v

v

v

v

v

v

v

8 X 32-bit Words Parallel

G
 G
ro
up
s
Ev
al
ua
te
d
in
 P
ar
al
le
l

Each of G Groups has P=N/G Chunks

…

…

… V
M
IN
 P
as
s

Integrated in Demo for ACT-R

Chunk 1

Chunk P+1

…

(G-1)*P+1

Chunk P

Chunk 2*P

…

Chunk N=G*P

Figure 2: Matching memory for ACT-R acceleration

The programmable match memory of Figure 2 implements
a match function (F) in parallel across 256 bits of the input
operand, along with parallel banking of memory, objective
evaluation, and result selection. The implementation can
sustain in excess of a 50 mega-chunks-per-second match
rate for a fully-pipelined match function.

Hardware Support for SOAR

The core production matching of SOAR targeted for
hardware implementation is based on an algorithm known
as Rete [3]. Rete is an exact-match algorithm that uses two
memory types: the working memory contains facts about
the world that are collected over time, and the production
memory contains rules. Each rule in the production memory
would typically be a set of conditions and a set of actions to
perform if those conditions are met. An added complexity is
that the condition expressions may contain variables that
must be bound during matching.

The study of Rete hardware targets a simulation of the
event driven processing afforded by asynchronous logic [5].
Figure 3 shows an asynchronous data flow network for a
Rete, where each node is built from fine-grained logic and
can execute concurrently as soon as dependencies are met.
As is typical with asynchronous approaches, energy
consumption for computation is reduced by computing only
when necessary, and performance can be greater by
removing the need for a central clock.

Due to the dependencies of typical networks, the maximum
concurrency achievable is only on the order of 10X to 20X.
Hardware support for hash functions yields higher constant
factors of acceleration and are under consideration.

System Support for Swarming

To support swarming, a key cognitive component of the
PCAA architecture, we attempted to abstract the common
control aspects of swarming algorithms through develop-

ment of an API. Whereas swarming algorithms were
traditionally written as custom applications, often from
scratch, this API is useful to allow more sophisticated use
of the underlying hardware. By handling low-level details,
this reusable infrastructure also naturally helps support
rapid cognitive application development.

out
in

out
in

out
in

out

out1tests

tests_1

(join_tests)

out2tests

out3tests

top
(beta_mem)

join_1
(join_node)

C1
(beta_mem)

join_2
(join_node)

C1ˆC2
(beta_mem)

join_3
(join_node)

new
(p_node)

ref
bmem_ref

ref
bmem_ref

ref
bmem_ref

out
in1

out
in1

out
in1

 alpha_C1
(alpha

in2

amem_refref

outin2

amem_refref
 alpha_C2
(alpha

 alpha_C3
(alpha

outin2

amem_refref

alpha_net1

(alpha_net)

/new1

out
in

wme_source1

(wme_source)

out
in

in

in

in

out1

out2

out3

Figure 3: Rete in event-driven logic

Swarming is conceptually highly parallel. In our API
prototyping, we found this parallelism to be readily
available in practice. The challenge is often the grain size;
however, with too little work per node, communication
costs can dominate. The grain size issue through clustering
of highly-connected nodes and communication-aware
layout of work, including dynamic rebalancing, will be
important to manage.

Further Discussion
The results of these studies show that specialized hardware
can significantly outperform general purpose processing (in
some cases by orders of magnitude) for kernels of our
chosen cognitive framework. However, along with
Amdahl’s law, there are additional obstacles to achieving
system level performance on par with the speedups of the
individual critical components. For example, the
transformation of sensory data into a symmetry-invariant
form suitable for lookup in a limited memory can be
resource intensive and difficult to generalize.

To help system designers select cognitive processors,
metrics are being developed. An indicator of performance
identified here is “chunks-per-second,” but in general,
measures of performance of a cognitive system may not be
so clear cut and may not apply to different frameworks.

The architecture of cognition is a continuing research
program, and the attempt to apply the general methods to
this specific application should further extend our
understanding of these frameworks.

The continued top-to-bottom implementation of this
application using cognitive techniques should yield
additional insights and capabilities. For example, while we
have begun to study the kernels and cognitive frameworks

in isolation, the integrated application should provide
insights and opportunities for specialized operators working
within application-compatible reduced reliability or
exploiting temporal or spatial locality in the control and
data flow across kernels. The cognitive frameworks are, in
a sense, interpreters running a high-level cognitive
program; with more insight into the structure and behavior
of this program, we expect to be able to develop specialized
system and hardware mechanisms to exploit them. System
and hardware support that reduces the cost of using
cognitive frameworks should facilitate further application
of cognitive techniques, increasing the intelligence of
important embedded systems.

Acknowledgement
The authors would like to thank DARPA, AFRL and
government laboratories for fostering innovation in this
area.

References
[1] J. R. Anderson and C. Labierre. The Atomic Components of

Thought, Lawrence Erhlbaum 1998.

[2] D. D. Clark, C. Partridge, J. C. Ramming, J. T. Wroclawski,
“A Knowledge Plane for the Internet”, in Proceedings of the
2003 Conference on Applications Technologies,
Architectures, and Protocols for Computer Communications,
2003.

[3] R. B. Doorenbos, Production Matching for Large Learning
Systems, Ph. D. Thesis, CMU, 1995.[

4] P. Langley, J. E. Laird, S. Rogers, “Cognitive Architectures:
Research Issues and Challenges,” Unpublished, cited by
permission, 2006.

[5] R. Manohar and K. Mani Chandy. “Delta-Dataflow Networks
for Event Stream Processing,” Proceedings of the IASTED
International Conference on Parallel and Distributed
Computing and Systems, November 2004.

[6] A. Newell, J. C. Shaw, H. Simon, “Report on a General
Problem-Solving Program,” In Proceedings of the
International Conference on Information Processing, 1960.

[7] A. Newell, Unified Theories of Cognition, H a r v a r d
University Press, 2000.

[8] H. V. D. Parunak, S. A. Brueckner, and J. Sauter, “Digital
Pheromones for Coordination of Unmanned Vehicles,” In
Proceedings of Workshop on Environments for Multi-Agent
Systems (E4MAS 2004), Springer, 2004.

[9] A. F. Wehowsky, Safe Distributed Coordination of
Heterogeneous Robots through Dynamic Simple Temporal
Networks, Ph.D. Thesis, MIT, 2003.

