
Comparing Stochastic and Deterministic Computing
Rajit Manohar

Cornell Tech, New York, NY 10011, USA

Abstract—Technology scaling has raised the specter of myriads of cheap, but unreliable and/or stochastic devices that must be
creatively combined to create a reliable computing system. This has renewed the interest in computing that exploits
stochasticity—embracing, not combating the device physics. If a stochastic representation is used to implement a programmable
general-purpose architecture akin to CPUs, GPUs, or FPGAs, the preponderance of evidence indicates that most of the system energy
will be expended in communication and storage as opposed to computation. This paper presents an analytical treatment of the benefits
and drawbacks of adopting a stochastic approach by examining the cost of representing a value. We show both scaling laws and costs
for low precision representations. We also analyze the cost of multiplication implemented using stochastic versus deterministic
approaches, since multiplication is the prototypical inexpensive stochastic operation. We show that the deterministic approach
compares favorably to the stochastic approach when holding precision and reliability constant.

F

1 INTRODUCTION

MODERN CMOS technology can produce reliable chips
with many billions of devices. With power being a major

consideration in any modern VLSI system, researchers are
always looking for approaches to reducing the energy cost of
computation. Examples of this include very low voltage CMOS
circuits, using new devices for storage and computation, self-
timed computation, molecular substrates, and new models of
computation such as brain-inspired computing. Reducing the
precision at which a computation is performed can also provide
significant benefits (e.g. [2], [9]).

One approach to low-precision computation that was ex-
plored historically (for example, in [10], [18]) and that has
gained some traction in recent years is the notion of stochastic
computing. In a stochastic computing approach, the designer
of a system embraces the notion of probabilistic computing in
a fundamental way. A real-valued variable in the range [0, 1] is
represented as a sequential stream of bits that can be either 0 or
1, where the probability of being a 1 represents the value being
communicated on the wire. Recent work has used stochastic
computing for image processing [1], low-density parity check
codes [11], factor graphs [16], digital signal processing [14], and
recognition/data mining [6]. The goal of this paper is to take
an analytical approach to comparing stochastic computing with
the more conventional deterministic (non-stochastic) approach
to computing.

In any modern highly programmable VLSI system, the
energy cost of communication and storage (including moving
data to/from memory) dominates the cost of computation. Ex-
isting chips that fall into this category include microprocessors,
graphics processing units, field-programmable gate arrays and
neuromorphic architectures. Due to the importance of the cost
of communication, this paper examines a basic question: what
is the representation cost (in bits) of a real-valued variable v
in the range [0, 1]? This directly impacts both storage and data
movement costs. We examine a number of different representa-
tions including conventional digital, non-standard digital, and
stochastic. We also present an analysis of prototypical examples
of stochastic computing—multiplication of two numbers, and
edge detection—as they are often used to justify the efficiency
of stochastic computing architectures. Our analysis shows that
deterministic computing compares quite favorably to stochastic

Manuscript submitted: 02-Feb-2015. Manuscript accepted: 02-Mar-2015. Fi-
nal manuscript received: 06-Mar-2015.

computing when one controls for the true precision at which
the computation is performed.

2 REPRESENTATION COST

Consider the problem of representing a real-valued variable v,
where v ∈ [0, 1]. v might take on any value in this range. To
ensure that we are making a fair comparison between different
approaches, we require that v be represented with a fixed
precision specified by an error tolerance ε. In other words, given
the value v, the representation can use any v̂ as long as

|v − v̂| ≤ ε (1)

What metric is suitable for comparing different approaches
to this question? We posit that a useful metric for this purpose
is the number of bits that must be communicated from a sender
to receiver in order to satisfy Equation 1. In what follows, we
examine a variety of approaches to this problem, and quantify
their cost in terms of the number of bits that have to be transmit-
ted from the sender to the receiver for correct communication.
Note that this is also the storage cost. For most of this section,
we assume that the actual process of transporting bits from
sender to receiver is error-free. We address the issue of errors
in the final part of this section.

2.1 Standard Digital Representation

The conventional approach to solving the communication prob-
lem is to simply uniformly sub-divide the range [0, 1] into
intervals of size 2ε. Hence, the interval [0, 1] is broken down
into 1/2ε buckets, where the ith bucket is

Bi : [i/2ε, (i+ 1)/2ε] i = 0, 1, . . . , d1/2εe − 1 (2)

(For simplicity we assume that 1/2ε is an integer.) The problem
of communicating v is converted into identifying the bucket
i that contains v, and then representing the bucket identifier
using lg 1/2ε bits. This corresponds to using a fixed-point
representation for the value v, something that is routinely
done in modern computer systems especially in the embedded
computing space where power places a more severe constraint.1

Often the value lg 1/2ε is used to specify the precision of the
computation in the units of bits rather than error; that is, b bits
of precision corresponds to ε = 2−(b+1).

1. Floating-point representations place a constraint on relative error
rather than absolute error as we have done in Equation 1.

Preprint. To appear, IEEE Computer Architecture Letters (2015)

2.2 Stochastic Representation

In stochastic data representations, a value is represented as
the average of a number of independent, identically distributed
(i.i.d.) random variables. In the classic approach (see [17] for
a summary of work prior to the early 1980s), a value v is
interpreted as a probability. Instead of sending the value v, a
sender sends a stochastic sequence of zeros and ones, where the
probability of transmitting a 1 is given by v. Since the expected
value of the 0/1 sequence is v (the probability), this sequence is
another way to transmit the value v.

What is the cost of communicating v in this manner? This is
a slightly more complicated question than the original problem
that we posed. To understand why, consider the problem of
sending the value v = 0.5 using a 0/1 sequence of length
N with error that is less than ε = 0.1. Since the sequence is
i.i.d., with probability 0.5N we transmit N zeros. For finite N ,
although this probability may be very small, it is never zero.
Hence, we cannot guarantee that we send v with at most ε error.
Instead, we must use a slightly weaker guarantee—namely, that
we transmit the required value with high probability. Let δ be
the probability that Equation 1 is not satisfied. In other words,
our problem statement for the stochastic case is modified by
assuming that the receiver is permitted to receive v̂ as long as

max
v∈[0,1]

{Prv̂[|v − v̂| > ε]} ≤ δ (3)

We can use concentration inequalities to derive an analytical
expression that relates the number of bits used, N , with the
quality of the received value v̂. In our scenario, the receiver
has v1, v2, . . ., vN as N i.i.d. Bernoulli random variables,
and computes

∑N
i=1 vi/N as the estimate v̂. Hence, by using

Hoeffding-Chernoff bounds [5], [13], we know that

Pr[|v − v̂| > ε] ≤ 2e−2Nε2 (4)

Note the similarity between Equations 3 and 4. This means
that to have a good estimate of the value v̂ at the receiver, the
number of samples relates to δ by:

δ = 2e−2Nε2 ⇒ N =
1

2ε2
ln

2

δ

In other words, the number of bits required to communicate
v with tolerance ε (with high probability (1 − δ)) scales as
O(1/ε2) using a stochastic approach to communication. While
Hoeffding-Chernoff bounds are not tight for small N , they do
capture the correct scaling law. For smallN , we can numerically
compute the minimum value of N such that Equation 3 is
satisfied given δ and ε. This can be done through a counting
argument, since the number of ones follows a binomial distri-
bution and we can numerically compute the probability that the
number of ones is too large or too small to accurately represent
the value v; we do so in Section 2.5. Other work has noted that ε
must scale as 1/

√
N (e.g. see [17]); however, the role of δ, which

is critically important (Section 2.5), has been ignored.

2.3 Deterministic 0/1 Encoding

The stochastic approach assumed that the bits transmitted
were in fact i.i.d. random variables. What if we remove this
constraint? In our example of transmitting 0.5, for any even
value of N we can guarantee that we send precisely N/2 ones
and N/2 zeros, ensuring that the constraint of Equation 1 is
always satisfied. This is a well-known idea, and pulse-width
modulation is a special case where the transmitted zeros and
ones are clustered.

Assuming that we transmit N bits, the deterministic 0/1
scheme sets a deterministic fraction of bits to 1 based on the
value v. Switching one bit from a 0 to a 1 or vice versa changes

TABLE 1
Summary of the complexity of representation and communication cost

to bound receiver error by ε (with high probability (1− δ) for the
stochastic case). The “Adaptive?” column indicates if the representation

can dynamically adapt to different precision requirements.

Technique Bits Complexity Adaptive?
Standard digital lg 1/2ε O(log 1/ε) N

Stochastic 1/2ε2 lg 2/δ O(1/ε2) Y
Deterministic 0/1 1/2ε O(1/ε) Y
Adaptive digital lg 3 lg(1/ε) O(log 1/ε) Y

the value being transmitted by 1/N . Hence, to ensure that
Equation 1 is satisfied, we must have ε ≥ 1

2N
.

In this approach, the number of bits required to attain a
particular error rate is given by 1/2ε—clearly superior to a
purely stochastic approach. The cost of doing this is that two
input streams represented in this manner cannot be combined
using the simple probability rules that assume independence,
because the value streams are not random. For some special
cases, deterministic 0/1 sequences have been developed with
simple combination rules [12].

2.4 Adaptive Digital Representation

One of the benefits of using deterministic 0/1 or stochastic
encoding over conventional digital circuits is that they permit
adaptive precision. Since a circuit capable of computing on serial
bit-streams tends to be the same for arbitrary bit-stream lengths,
this automatically permits a trade-off between delay (as N gets
larger, the delay is larger assuming a fixed bandwidth for com-
munication) and precision. This is appealing for applications
such as wireless receivers, where the precision requirements
vary based on input signal strength.

However, there is an adaptive logarithmic encoding possible
for digital computation. Instead of encoding numbers with
zeros and ones, the encoding can include a third digit that
indicates the “end” of the number [15]. The energy usage of
such a design adapts automatically to the number of significant
digits in the number. In the simplest incarnation, this means
each digit is one of three values, requiring lg 3 bits per digit.
Also, we need an extra digit to specify that the number ends.
Hence we require lg 1

2ε
digits, plus one more to indicate that

the number ends. Each digit requires lg 3 bits. Hence, the cost is
lg 3 lg(1/ε) bits to represent a number to ε precision. Combining
this approach with a bit-serial architecture provides the benefits
of logarithmic encoding with adaptive precision. This approach
was implemented in a complete microcontroller [8], demon-
strating the practicality of this approach. Many variants of this
approach are possible (see [4], [15]) trading off complexity with
the granularity of adaptation.

TABLE 2
The communication and representation cost in bits for various

approaches; lower is better. For the stochastic case, δ is the probability
that we fail to achieve the desired precision (Eq. 3); lower is better. δ for

the deterministic cases is 0. b bit precision is ε = 2−(b+1).

Prec. Deterministic Stochastic
(bits) Std. 0/1 Adapt. δ = 0.05 δ = 0.10 δ = 0.25

1 1 2 3.16 12 8 3
2 2 4 4.75 56 37 16
3 3 8 6.34 233 160 80
4 4 16 7.92 960 672 320
5 5 32 9.51 3904 2752 1344

Preprint. To appear, IEEE Computer Architecture Letters (2015)

TABLE 3
Same as Table 2, except the stochastic case has to satisfy a weaker
constraint Ev [Prv̂ [|v − v̂| > ε]] ≤ δ, where v is uniformly distributed.

Prec. Deterministic Stochastic (avg. error)
(bits) Std. 0/1 Adapt. δ = 0.05 δ = 0.10 δ = 0.25

1 1 2 3.16 8 4 2
2 2 4 4.75 40 24 8
3 3 8 6.34 176 112 48
4 4 16 7.92 704 448 192
5 5 32 9.51 2816 1856 832

2.5 The Low Precision Scenario
From the standpoint of communication and number repre-
sentation (which can be viewed as a proxy for storage), the
asymptotic results from Table 1 show that the conventional
wisdom of using fixed-point representation for any reasonable
precision is actually well-founded. The scaling laws we have
derived show that the cost for stochastic (and even determinis-
tic 0/1) communication will quickly become prohibitive when
compared to the deterministic fixed-point (both adaptive and
non-adaptive) approach. Two natural questions that arise about
Table 1 are: (i) what happens if the precision required is very
low? That is, after all, when the stochastic representation should
have benefits. (ii) The bounds we derived on δ in Equation 4 are
only bounds and may be misleading.

We address both of these issues by computing the number of
bits required for each representation for low values of precision
ε in Table 2. For standard digital (labeled “Std.”), deterministic
0/1 (labeled “0/1”), and adaptive digital (labeled “Adapt.”),
our expressions from Table 1 are exact and so we simply use
the formula. For the stochastic case, we compute the value of
N exactly as follows. If the stochastic sequence is of length N
and we receive k ones (k = 0, 1, . . ., N), the value received v̂ is
k/N . The probability of k ones in the sequence when the value
v is being represented is given by

(
N
k

)
vk(1−v)N−k. We use this

expression to compute the smallest number of bits required in
the stochastic case to satisfy Equation 3. The values v that we
use are of the form i/d1/2εe for i = 1, . . . , d1/2εe.

Even if we allow the stochastic case to be incorrect with 25%
probability, a one-bit precise representation requires more than
2 bits (Table 2). This may seem surprising, but one can actually
see why this is the case. If we use two bits, then we cannot
represent say the value 0.5 with a maximum error ε = 0.25
(the definition of one-bit precision). This is because there is a
0.25 probability that the received sequence would be 00 (value
0), and a 0.25 probability that the received sequence would
be 11 (value 1), resulting in an overall 0.5 probability that the
precision requirements are not met. Increasing the reliability
requirement to δ = 0.10 requires eight bits—even though the
result is only guaranteed to be correct to one-bit precision. Most
of the literature on this topic ignores the critical role played
by δ—the probability that the result no longer satisfies the
precision constraint. Finally, one could argue that Equation 3
is too strong of a constraint; we should relax it and use the
expected value rather than the maximum on the left hand side
of (3). Table 3 is the result of this exercise, showing that the
stochastic representation remains costly.
2.6 Communication Errors
So far we have not addressed the issue of communication
errors. We could have avoided the entire discussion so far and
stated that using a fixed-point representation is optimal. The
reason follows from information theory. If we assume that the
input v ∈ [0, 1] is uniformly distributed over the interval, and

we must represent this with error at most ε, then the optimal
scheme is to divide the interval into uniform bins each of
width 2ε. The entropy of the symbols used to represent v is
given by ln 1/2ε nats, which corresponds to lg 1/2ε bits. This is
achieved by the fixed-point representation. Hence, fixed-point
representation is optimal assuming that the input v is uniformly
distributed on the [0, 1] interval.

What happens if there are errors possible in the communi-
cation link from the sender to the receiver? While at first this
appears to be a complex question, information theory provides
a concrete answer since we have a single sender and single
receiver scenario with stationary statistics. Shannon’s source
and channel coding separation theorem says that encoding the
value to be transmitted separately from error control coding
for the communication link is optimal [7]. Hence, treating the
problem of encoding for errors in the channel separately from
the representation question is sufficiently general.

Suppose we have a communication channel that randomly
flips bits with probability f . The effect on stochastic comput-
ing is to add a bias and scale to the value communicated—
value v changes to v(1 − f) + (1 − v)f = f + (1 − 2f)v.
In the deterministic case of using b bits, as long as the error
probability f̂ = 1 − (1 − f)b is below the value of δ, no error
correction is necessary to satisfy constraint (3). If f̂ > δ, then
even the inefficient repetition code that repeats each bit 2k − 1
times (decoding is a simple majority circuit) can reduce f to∑2k−1
i=k

(
2k−1
i

)
f i(1−f)2k−1−i. As a concrete example, consider a

communication channel with f = 0.10 where we must transmit
4-bit precise values with δ = 0.1. f̂ = 0.344, and the value of
f low enough to make f̂ ≤ δ is f = 0.025. This reduction can
be achieved with k = 3, i.e. a repetition count of 5. Hence, the
deterministic scenario transmits 20 bits to send value v v/s the
stochastic case that uses 672 bits to send value 0.1 + 0.8v.

If we know the distribution of v in the [0, 1] interval, we can
use it to compress v before encoding the value to be transmitted
over the channel. Once the data is compressed, v ∈ [0, 1] will be
uniformly distributed and our earlier analysis holds.

3 ANALYSIS OF SIMPLE COMPUTATION

While the cost of computation today is small relative to com-
munication and storage, it is still instructive to examine the
difference in cost between simple fixed-point and stochastic
computations when precision is held constant.
Multiplication: The classic example of why stochastic computing
is worth examining in detail is the problem of multiplication.
Fixed-point multiplication is a relatively expensive arithmetic
operation. The three most commonly used ways to implement
fixed-point n-bit multiplication are: (i) an iterative scheme, with
an n-bit add/shift block and extra registers—O(n) hardware—
that takes O(n) iterations; (ii) a standard array multiplier, with
O(n2) hardware (n stages of n-bit carry save addition, followed
by a fast n-bit adder) that takes latency O(n), but can have O(1)
throughput; (iii) a carry save tree like a Wallace tree, that uses
O(n2) hardware and hasO(logn) latency andO(1) throughput.

Stochastic multiplication, on the other hand, is trivial. We
assume that the statistical properties of the two bit-streams are
independent of each other. Recall that the value represented by
a stochastic bit-stream is the probability that a bit is 1. If the two
probabilities are a and b, and they are independent, then the
probability that both bits are 1 is a ·b. Hence, a single AND gate
implements stochastic multiplication—for any precision. On the
surface this seems extremely efficient compared to traditional
multiplication of fixed-point values.

However, consider the multiplication problem where we
impose a fixed error constraint on the result. If the two values

Preprint. To appear, IEEE Computer Architecture Letters (2015)

TABLE 4
The gate invocation cost for fixed-point multiplication versus stochastic

multiplication; lower is better. For the stochastic case, δ is the
probability that we fail to achieve the desired precision (Equation 3);
lower is better. The equivalent δ for the fixed point case is 0. The bits

refer to the precision of the inputs to the multiplier.

Bits Fixed-point
Stochastic

δ = 0.05 δ = 0.10 δ = 0.25

1 2 24 16 6
2 6 112 74 32
3 36 466 320 160
4 111 1920 1344 640
5 198 7808 5504 2688

being multiplied are a and b, and we require the result ab
to be represented with at most ε error, we require the inputs
a and b to be represented with ε/2 − O(ε2) error [3]. From
Tables 1 and 2, this means that the stochastic case requires
many more invocations of the AND gate—i.e. O(1/ε2) gate
invocations. The conventional fixed-point arithmetic scenario
requires O(n2) operations, where n = lg 1/ε (Table 1)—in other
words, O(log2 1/ε) gate invocations. Hence, the complexity of
using fixed-point representations is lower than the stochastic
case when we control for precision.

From the asymptotic analysis, it is clear that a fixed-point
multiplier will eventually be significantly superior to a stochas-
tic multiplier. What about for low precision? To provide a first-
order analysis of this, we use “gate invocations” to compare
fixed-point versus stochastic multipliers for various precisions
(measured in bits) to capture the fact the stochastic circuit must
be invoked many more times than the fixed-point multiplier.
A detailed comparison would require technology-specific infor-
mation; to avoid this, we simply use a weighted count (dynamic
area as a proxy for switching energy) of the gates with a very
simple area model—for example, inverters have cost 1, 2-input
ANDs and ORs have cost 2, a 4-input AND/OR has cost 3, etc.

For the fixed-point case, we used Synopsys design compiler
to synthesize fixed-point combinational logic multipliers of
various bit-widths. Note that this requires the high-order n bits
of the output of an n-bit integer multiplier. For the stochastic
case, we multiply the cost of a two-input AND by the number
of times it must be invoked to attain the same precision as
the fixed-point case. Since the analytical expression for the
precision attained in the stochastic case is based on a bound, we
use an exact expression for the error probability δ (Section 2.5).

The results of this exercise are summarized in Table 4,
which assumes one input is correct2 with probability (1 − δ).
A one-bit fixed-point multiplier is cheaper than the stochastic
case. The gap between the two diverges for higher precision.
Table 4 should not be interpreted too literally; the take-away
is that even at low precision a fixed-point representation is not
expensive when compared to a stochastic multiplier due to the
number of bits that must be processed in the stochastic case to
attain equal precision with high probability.

Edge detection: Another example used to show the efficiency of
stochastic computing is simple edge detection using the Roberts
cross operator which computes zi,j = 0.5(|xi,j − xi+1,j+1| +
|xi,j+1 − xi+1,j |) where xi,j is the pixel at location (i, j) and
zi,j is the corresponding output. Recent work uses a stochastic
sequence of N = 1024 bits to represent 8-bit pixel values [14].
We implemented the same edge-detection algorithm, except

2. In the general case of multiple outputs, all outputs must be correct
with confidence δ, not just one.

instead of using standard images we simply used an image
that is 0.5 at each pixel. The correct output is an image that
is all zeros. Our simulations found that an idealized error-
free computation with a stochastic pixel representation would
produce an output image that is correct with at most 2-bit
precision when N = 256, and at most 4-bit precision even when
N = 1024. This is more pessimistic than Table 2 because, for
example, subtracting two values that are imprecise—a part of
edge detection—can result in a doubling of the error.

4 CONCLUSIONS

We compared the cost of stochastic number representations
with more conventional deterministic approaches. We control
for the fact that stochastic representations have a non-zero
overall error probability, beyond precision limitations. Our
comparison provides both asymptotic complexity comparisons
as well as calculations for finite precisions, in both cases show-
ing that stochastic representations are more expensive than one
might expect. We also present a similar analysis of the cost of
multiplication, because it is often used as an argument in favor
of stochastic computing. Our results show that even for simple
computation, stochastic computing has disadvantages both in
asymptotic complexity as well as in the low precision scenario
given our criterion for correct information representation.

REFERENCES

[1] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. of DAC, 2013.

[2] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain<t>: A
first-order type for uncertain data,” in Proc. ASPLOS, 2014, pp.
51–66.

[3] R. Bulirsch and J. Stoer, Introduction to numerical analysis. Springer
Heidelberg, 2002.

[4] R. Canal, A. González, and J. E. Smith, “Very low power pipelines
using significance compression,” in Proceedings of the ACM/IEEE
International Symposium on Microarchitecture, 2000, pp. 181–190.

[5] H. Chernoff, “A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations,” The Annals of
Mathematical Statistics, pp. 493–507, 1952.

[6] V. K. Chippa, S. Venkataramani, K. Roy, and A. Raghunathan,
“Storm: A stochastic recognition and mining processor,” in Proc.
Int. Symp. on Low Power Electronics and Design, 2014, pp. 39–44.

[7] T. M. Cover and J. A. Thomas, Elements of information theory.
Wiley-interscience, 2006.

[8] V. N. Ekanayake, C. Kelly IV, and R. Manohar, “Bitsnap: Dy-
namic significance compression for a low-energy sensor network
asynchronous processor,” in Proceedings of the IEEE International
Symposium on Asynchronous Circuits and Systems, 2005, pp. 144–154.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architec-
ture support for disciplined approximate programming,” in Proc.
ASPLOS, 2012, pp. 301–312.

[10] B. R. Gaines, “Stochastic computing,” in Proceedings of the April
18-20, 1967, Spring Joint Computer Conference, 1967, pp. 149–156.

[11] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic
computation,” Electronics Letters, vol. 39, no. 3, pp. 299–301, 2003.

[12] P. Gupta et al., “Binary multiplication with PN sequences,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 36, no. 4,
pp. 603–606, 1988.

[13] W. Hoeffding, “Probability inequalities for sums of bounded ran-
dom variables,” Journal of the American statistical association, vol. 58,
no. 301, pp. 13–30, 1963.

[14] P. Li and D. J. Lilja, “Using stochastic computing to implement dig-
ital image processing algorithms,” in IEEE International Conference
on Computer Design, 2011, pp. 154–161.

[15] R. Manohar, “Width-adaptive data word architectures,” in Proc.
2001 Conference on Advanced Research in VLSI, 2001, pp. 112–129.

[16] V. K. Mansinghka, “Natively probabilistic computation,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2009.

[17] P. Mars and W. J. Poppelbaum, Stochastic and deterministic averaging
processors. P. Peregrinus, 1981.

[18] W. J. Poppelbaum, C. Afuso, and J. W. Esch, “Stochastic computing
elements and systems,” in Proceedings of the November 14-16, 1967,
Fall Joint Computer Conference, 1967, pp. 635–644.

Preprint. To appear, IEEE Computer Architecture Letters (2015)

