
cellTK: Automated Layout for Asynchronous
Circuits with Nonstandard Cells

Robert Karmazin, Carlos Tadeo Ortega Otero, Rajit Manohar
Computer Systems Laboratory, Cornell University

Ithaca, New York 14853, U.S.A.
{rob, cto3, rajit}@csl.cornell.edu

Abstract—Asynchronous circuits are an attractive option to
overcome many challenges currently faced by chip designers,
such as increased process variation. However, the lack of CAD
tools to generate asynchronous circuits limits the adoption of this
promising technology. In this absence of CAD tools, the most
time consuming part of chip design is the back-end (physical
design) effort. We propose a complete design infrastructure
to physically implement an asynchronous digital netlist with
orders of magnitude time savings over expert human effort.
The core of this flow is the ability to generate customized logic
that is compatible with available ASIC flows. We evaluate our
flow against several asynchronous circuit benchmarks for which
full custom physical implementations exist. Compared to hand-
optimized custom designs, our flow produces layout that has, on
average, a 51% area overhead, with a 12% increase in energy
and a 9% increase in delay.

Index Terms—Design Automation, Integrated Circuit Layout.

I. INTRODUCTION

As process technology scales, transistor count and perfor-
mance increases along with their variability and their sus-
ceptibility to environmental changes, presenting synchronous
design methodologies with unique challenges in managing
clock distribution and signal skew. As a result, engineers need
to include larger margins into designs to ensure correct opera-
tion under increasingly uncertain fabrication or environmental
conditions.

The asynchronous paradigm offers an attractive solution
to this problem. Asynchronous circuits refer to the class of
self-timed circuits where synchronization is achieved locally,
making asynchronous circuits, especially the Quasi Delay-
Insensitive (QDI) family, more robust to process and environ-
mental variation [20]. Additionally, asynchronous circuits are
modular by construction, allowing full systems to be composed
of modules designed in isolation, greatly reducing design and
verification times [19].

Unfortunately, the advantages of asynchronous circuits at
tackling these challenges are tempered by the lack of mature
and accessible CAD tools. This is especially true for physical
design, where the majority of design time is spent. Existing
work related to back-end flows for custom logic is described
in Section II. In general, these works are classified into three
broad categories:

Technology Mapping: This technique maps customized
logic onto an existing library, allowing the exploitation of
previously designed and characterized libraries, as well as

mature ASIC flows. However, the inefficiency of the mapping
often negates the advantages of having customized logic [2].

Custom Standard Cells: This method requires the creation
of a library of hand-crafted cells onto which custom logic is
mapped. However, implementing every possible logic function
is intractable, and each library is targeted to a specific process
technology, making this method neither generic nor portable
[1,25,27].

Full custom layout: This approach involves manually draw-
ing every transistor and wire in the design, typically yielding
a physical implementation with the smallest area and best
performance. However, it is very expensive in terms of design
time and human effort, which typically restricts this approach
to only the most critical components of the system.

None of the above solutions are ideal, making the imple-
mentation of asynchronous circuits a much more difficult task
than it would be for comparable synchronous circuits. As a
solution to this problem, we present cellTK, a “nonstandard”
cell generator and physical design infrastructure. We coin the
term nonstandard cells to refer to on-demand custom cells
that fit into an automated standard cell flow. cellTK automates
this custom cell generation, which mitigates the drawbacks of
the Custom Standard Cells methodology while still offering
the flexibility of Full Custom and the utility of Technology
Mapping.

cellTK receives a transistor-level description of the circuit
as an input and produces its physical implementation by gen-
erating customized logic “packaged” in the form of standard
cells, which are compatible with widely-used synchronous tool
flows. cellTK has the advantage of being able to generate
custom cells on demand, allowing the design to map directly to
the produced cells. This automated approach removes any loss
from an inefficient mapping and frees the designer from being
tied to a fixed library. In addition, cellTK integration with
available CAD tools allows for fast physical implementation of
large designs, removing the manual labor cost associated with
custom logic. We show that cellTK is able to produce layout
for various parts of a microprocessor with moderate area and
performance overheads, and in some cases, improvements over
a full custom implementation.

The rest of this paper discusses prior work (Section II),
details the complete cellTK flow (Sections III - VI), evaluate
the flow against a full custom implementation of several
benchmarks (Section VII), and discusses the advantages and



other uses for this flow (Section VIII).

II. RELATED WORK

cellTK aims at generating cells that will be used in an
asynchronous layout flow. As such, this section discusses prior
works in the fields of cell generation as well as more traditional
back-end synthesis flows for asynchronous circuits.

A. Cell Generation

To reduce computational complexity, much of the initial
work in this field restricted transistor placement to two rows:
P-type transistors are placed in one row and N-type transistors
are placed in another. This layout style is known as 1-D, since
placement of transistors is allowed only in one dimension.
The work by Uehara and VanCleemput [29], and later by
Maziasz and Hayes [22], formulate the transistor placement
problem as a graph optimization problem: minimizing the
number of trail covers of the diffusion graph minimizes the
number of diffusion breaks in the cell, and thus, overall cell
width. However, these works are restricted to static CMOS
gates, where the pull-up and pull-down networks are duals
and there are an equal number of N- and P-type transistors.
Later works, such as CELLERITY [14], XPRESS [13], and
LiB [15], have generalized placement algorithms to handle
arbitrary transistor netlists.

The placement solutions in [15,22] use deterministic algo-
rithms to find optimal solutions, but this is only tractable on
relatively small netlists. Larger cells require heuristic-based
algorithms to handle the additional complexity. XPRESS uses
exact algorithms and heuristics to generate the minimum graph
covering using transistor trails, minimizing diffusion gaps and
overall width. CELLERITY, TEMPO [24], and ASTRAN [31]
use a simulated annealing framework for placement. These
works use cost functions that incorporate cell width, transistor
ordering and orientation, gate alignment, and routing quality.
Alternatively, Gopalakrishnan [12] uses a greedy heuristic to
do an intra-row refinement as the last phase of a multi-stage
placement strategy. Using heuristic algorithms allows cell
generators to explore beyond the traditional row-placement
layout style, as in [24], and to some extent [12]. Heuristics,
however, usually require a compaction stage to achieve designs
comparable to hand-optimized layout.

Most of the works mentioned above use grid-based routers.
For example, in [31], all transistor placement is aligned
to the routing grid to ensure all transistor connections are
made. A negotiation-based router typically used for FPGA
routing is then used to make the connections. In [14], an area
router is used, which creates a non-uniform grid after taking
technology parameters and obstacles into account. Routing is
accomplished by finding the minimum spanning tree on this
grid, followed by a layer-assignment stage. In [15], the cell is
divided into regions, where the empty regions are routed by
the channel router SILK [18], and the regions over the N- and
P-diffusions are routed using a maximal clique formulation of
the connection graph representing the routing problem.

B. Design Automation for Asynchronous Circuits

To manage the complexity of VLSI chips, designers use
hardware description languages (HDLs) which place an em-
phasis on high-level architecture, abstracting away many of
the implementation details. However, these details must be
managed effectively as the design flows to its final physical
implementation.

Syntax-directed translation is the transformation of some
program written in a well-defined language into an equivalent
implementation using rules corresponding to the syntactic
constructs of that language. In the context of asynchronous
VLSI synthesis, these constructs correspond to simple CMOS
circuits that implement some basic functions, such as a
boolean assignment or a communication action. Burns and
Martin [4] describe a system where CSP-like programs [19]
are decomposed recursively until they can be translated to their
corresponding circuits. Tangram [30], and later Balsa [10],
use a syntax-directed approach to translate CSP to an abstract
“handshaking circuit”, which is then mapped to a circuit/layout
library. However, the resulting circuits tend to be slower and
area-inefficient, and libraries implementing these functions are
relatively complex compared to a typical standard cell library.

Another approach is to leverage existing HDLs and synthe-
sis engines to generate asynchronous circuits. For example,
Pipefitter [3] takes an initial specification in Verilog and uses
a commercial synthesis engine along with the asynchronous
control synthesizer Petrify [8] to generate a synthesizable
verilog netlist, which can then be mapped to a standard cell
library. A delay line matched to the latency of the logic in
each pipeline stage is added to ensure no race conditions
occur. Law et al. [17] present a similar solution, except with
more localized, and thus simpler, control circuitry. Weaver [25]
compiles a synchronous single-rail RTL description down
to a finely-pipelined QDI asynchronous implementation by
replacing synchronous logic gates and registers with their QDI
equivalents. A small yet sufficient hand-optimized library is
implemented on to which the design is mapped. Proteus [1]
represents a hybrid approach: The input, specified in CSP,
is translated syntactically into an RTL representation, which
is then mapped to a set of single-track logic gates using a
commercial synthesis engine. These gates are then clustered
and mapped onto a comprehensive library of cells following
the PCHB template.

III. NONSTANDARD CELL FLOW

We present cellTK as both a tool and an infrastructure
to automate the physical implementation of asynchronous
circuits. This section gives an overview of the entire flow,
and Sections IV, V, and VI detail the creation, layout, and
place-and-route stages, respectively.

The cellTK flow is shown in Figure 1. It begins with a
hierarchical Production Rule Set (PRS) as an input. The PRS
is automatically translated by Netgen (Section IV-A) into a
hierarchical transistor-level netlist, which is then clustered into
cells based on the nets that the transistor networks are driving
(Section IV-B). To minimize the amount of work done by the



Options

cells.spi

TechFile
Params

netlist.spi

Sized PRS

Cell Caching

Std Cell P&R

Errors? custom

CDS TechFile
No

Yes

Merge GDS

macro.def

cells.gds

Start

Cell Clustering

Cell Gen.

Netgen

cells.lef

End

Fig. 1. The complete cellTK flow.

cell generator, a cell cache is maintained such that only unique
or not-yet-generated cells continue through the rest of the flow.

Once the cells are created, a physical implementation for
each unique cell is generated, using a two-step transistor
placement and local routing phase (Section V). cellTK reads a
technology file containing process-specific rules for producing
legal (DRC clean) cells. Since each cell can be generated
independently, this step is easily parallelized. cellTK employs
a server/client model: the client sends requests out to multiple
layout servers, each running multiple cell generating threads.
Once completed, the client collects all the cells.

After all the cells are created, they are exported to a standard
cell placement and global routing tool (Section VI). The final
layout is generated by merging individual cells’ layout with the
geometry drawn during the cell placement and routing phase,
creating a GDS file ready for fabrication.

Unlike the solutions presented in Section II-B, the cellTK
flow does not require a library onto which circuits are mapped.
Rather, the library cells are generated on demand, yielding a
one-to-one mapping between circuit description and physical
design. Therefore, there is no need to have a preexisting asyn-
chronous cell library, nor a need to instrument synchronous
netlists with delay lines or flop controllers, giving the user
control over the generated layout not possible with previous
solutions.

IV. CELL SYNTHESIS

The synthesis stage can be split into two steps: a translation
step to create a transistor netlist from the provided PRS, and a
clustering step, which creates netlists for the individual cells.

A. Netgen: Netlist Generator

Netgen syntactically translates every Production Rule (PR)
into a transistor-level SPICE netlist. A single PR takes the
following form: G 7→ S, where G is a boolean expression
called the guard, and S is a boolean assignment. The PR
corresponds to a pull-up or pull-down switching network,
depending on whether the boolean assignment S was true
or false, respectively. The ordering of the resulting transistor
networks is deterministically derived from the PRS. The power
rails are assumed to be connected to the source terminal of the
transistor generated from the left-most literal in the PR guard,
and the output net (referred to as a node) is connected to the
drain terminal of the transistor derived from the right-most
literal of the guard. For example, the PR

a & b -> c-

is translated by Netgen into a network starting from GND
(since node c is being pulled down), connected to the source
of a transistor gated by a followed by a transistor gated by
b, whose drain is connected to the output node c. The SPICE
netlist corresponding to this PR is given by:

M0_ GND a #3 GND nfet W=0.3U L=0.12U

M1_ #3 b c GND nfet W=0.3U L=0.12U

A PRS can express not only static CMOS gates, but also
arbitrary transistor netlists from various circuit families, which
are a common result of Martin’s synthesis procedure [19].
To ensure electrically sound circuits are synthesized, Netgen
can automatically staticize dynamic nodes by adding state-
holding feedback transistors. These staticizers take the form
of either ratioed keepers or non-ratioed transistor networks
(implementing combinational feedback). This feature frees the
user from manually implementing staticizers, leading to a
cleaner, less cluttered, and easier to maintain PRS.

Netgen supports PRS annotated with attributes, allowing the
user even tighter control over the synthesized transistor netlist.
Common attributes include transistor widths and lengths, tran-
sistor types (high-Vt or low-Vt), and staticizing options (using
keepers or feedback transistors) for dynamic nodes.

B. Cell Clustering

Once the netlist is generated, transistors are clustered into
cells. Transistors are partitioned based on the node which they
are driving, similar to [13,15]. cellTK recursively walks the
pull-up and pull-down transistor networks driving a particular
node until the power rails are reached. All the P- and N-
type transistors discovered on this walk are then grouped in
the same cell. Any output inverters (defined as inverters that
are driven by this particular node) are also grouped in the
same cell to reduce that node’s capacitance. If a dynamic
node is staticized with a ratioed keeper, then the keeper
transistors are also grouped in the same cell. However, if the
node is staticized with a non-ratioed feedback network, those
feedback transistors are grouped into their own cell to keep
cell complexity manageable.



A cell cache is maintained to minimize the amount of work
required of the cell generator. If a cell is found in this cache,
it does not need to be regenerated. However, for the cache
to be effective, a lookup must take less time than simply re-
generating the cell. Thus, performing a graph isomorphism
test for every new cell against every cell already existing in
the cache must be performed quickly. However, the graph
isomorphism problem has been shown to be NP-complete [11],
and is not a reasonable solution for large designs with many
cells. Instead, we use a heuristic method to determine cell
equivalence. Our heuristic compares the number of I/O ports,
the number of transistors, and the number of nets in the cells.
If these simple checks are true, then the VF2 heuristic [7] is
used to determine the existence of structural isomorphisms in
the cells’ connectivity graphs. If these exist with respect to the
I/O ports, we then assume a cell match. Note that this heuristic
never yields false positives, and the number of false negatives
is, in practice, negligibly small.

It is important to note that the cells generated using the
above procedure would not be found in static standard cell
libraries [5]. The majority of asynchronous gates specified
in a PRS are dynamic, requiring some form of feedback to
ensure robust operation. Additionally, there are no restrictions
on transistor sizing at the PRS level. Indeed, some ratioed
feedback devices might have longer channel lengths (see
Figures 4 and 5), a feature that most of the works described
in II-A cannot properly handle. Though it is possible to emu-
late the cells’ behavior using static standard cells, this would
incur a significant area and latency overhead compared to a
direct implementation. Furthermore, this method would have
to ensure glitch freedom, an essential property of QDI circuits.
It is for these reasons that cellTK generates “nonstandard”
cells on the fly rather than mapping onto a static cells found
in synchronous libraries.

V. CUSTOM CELL LAYOUT

In this section, we describe the method used to generate
layout for nonstandard cells. The techniques for transistor
placement and local routing described below are designed to
be as generic as possible so that the cellTK flow can handle all
potential cell netlists. In the following discussions of transistor
placement and routing, a description of the overall method is
given, followed by its implementation details.

A. Transistor Placement

The goal of transistor placement is to place all the transistors
in as small an area as possible. cellTK places transistors in
rows, similar to [14,15,22]. In this 1-D layout style, min-
imizing cell area is equivalent to minimizing the number
of diffusion breaks, or maximizing the sharing of source-
drain terminals of logically-connected transistors. cellTK uses
a graph formulation of this problem similar to [24]: The
transistor netlist is converted into a diffusion graph where nets
are vertices and transistors are edges. Using this formulation,
finding the solution minimizing diffusion breaks is equivalent
to finding the fewest Euler paths (also referred to as trails

or chains in the literature) that cover the entire graph. cellTK
then uses these trails as the atomic unit of placement [12].

cellTK takes a novel approach to searching for these op-
timal trails: the search is guided by a gate-ordering, a pre-
determined order of transistors’ gates. cellTK performs a
recursive depth-first search of the diffusion graph, finding a
transistor ordering corresponding to the given gate-ordering.
A valid match is found when the gate terminals of the resulting
transistor ordering match those in the provided gate-ordering.
cellTK automatically orients these transistors such that diffu-
sion sharing is maximized. This approach has several advan-
tages. It prunes the search space as the algorithm does not
have to explore all possible paths through the diffusion graph.
It also allows for easy user intervention in the case of complex
or critical cells, such as memory cells where symmetry is
crucial. For cells with complementary pull-up and pull-down
transistor networks, the same gate-ordering can be applied to
both networks; non-complementary transistor networks require
different gate-orderings. Note that it is possible for a given
cell to have multiple transistor orderings for a single gate-
ordering. cellTK searches all potential transistor orderings
and chooses the one minimizing the number of diffusion
breaks. The current implementation of cellTK searches all
possible combinations of gate orders, and for each unique gate
order, searches all possible permutations and orientations of
transistors, to try and find the transistor ordering minimizing
the number of graph covers.

A chain assigned physical dimensions is referred to as a
stack. Unlike previous works, a stack’s size is not solely
dependent on its transistors; stacks grow or shrink based
on the dimensions and orientations of their transistors and
the rules of the given process technology. Stacks are stored
symbolically as linked lists, with each bucket in the list
corresponding to either a transistor’s source/drain terminal, or
a transistor’s gate terminal. These buckets also store physical
information, such as transistor widths and lengths, as well as
the spacing to adjacent transistors and diffusion contacts. This
allows cellTK to optimize the stack dimensions by making
local adjustments to distances between transistors and contacts
while still ensuring all design rule constraints are met. Figure 2
shows an example of the transistor network from the PRS
in Section IV, its resulting stack and its representation in
memory.

A

B

M0

M1

C

GND
+Net

M0
+Txr

#3
+Net

M1
+Txr

C
+Net

GND C

A B

#3

Fig. 2. The transistor netlist corresponding to the PR in Section IV-A (left),
the corresponding stack (top-right), and the symbolic representation of that
stack in memory (bottom-right).



As mentioned above, the atomic unit of placement is the
stack, not an individual transistor. The first transistor in the
found transistor ordering is the left-most transistor in its appro-
priate row. Actual placement is done by assigning coordinates
to the stacks. Stacks are offset in their respective rows in
such a way that gates common to both pull-up and pull-down
networks align vertically, simplifying the routing problem.

B. Transistor Router

Once the cell’s stacks are placed, its nets can be routed.
The overall routing strategy of cellTK is to complete intra-
cell routes first, using as few routing resources as possible,
and then complete routes to the cell’s I/O ports with higher
layers. This strategy is broken down into four steps:

1) Route all the aligned gates. Given the placement strategy
described previously, this can be trivially done with only
vertical polysilicon.

2) Route all the intra-cell nets. Priority is given to the cell’s
output node.

3) Draw power rails horizontally across the top and bottom
of the cell, aligned to the routing grid. Route the power
and ground nets first within the stacks, and then to the
drawn rails.

4) Draw “pins” for the cell’s I/O ports on a midlevel
routing layer, which are used as points of contact for
the commercial router.

In each successive step, the router is allowed to use more
routing resources. For example, in step 1, the router is only
allowed to use polysilicon, but in step 3, the first and second
metal layers are also allowed. The costs of routing in each
layer are user-adjustable such that higher level metal layers
are used as sparingly as needed. Figure 3 illustrates a cell
before and after it has been routed.

Fig. 3. Sample cell with placed stacks. The left cell has not yet been routed
except for the aligned gates in polysilicon. The right cell is completely routed.

The transistor placement strategy described above requires
the router to be capable of very detailed routing, since there
is no guarantee that net terminals will be on any grid or obey
any pitch. To account for this inherent irregularity, cellTK in-
corporates a router based on Contour [9], a gridless, tile-based
router built on top of the corner-stitch data structure [23].

The routing algorithm itself is based on A* [6]. Given
two unrouted terminals on the same net, potential solutions
(referred to as paths) are propagated outward into all adjacent

tiles free of any material (known as space tiles). These new
paths are then propagated to the next set of adjacent space
tiles, and so on. The search space is pruned by not propagating
paths whose resulting cost is higher than an existing path’s
cost. A solution is found when paths from the two terminals
intersect in a single space tile. If no solution is found, then
previously completed routes are ripped up and the search is
repeated until a solution is found, and the ripped nets are
rerouted. This router is fundamentally different from the cell
routers discussed in Section II because it does not operate on
a grid, allowing it to make fine-grained connections to stack
terminals. Previous routers required the stack terminals to be
on the routing grid, potentially bloating the total area.

The router integrated into cellTK is a modified version
of [16], where the basic tile is extended with pointers to tiles
in adjacent layers to speed up interlayer path propagation. The
tile is also extended with a unique solution tag, allowing the
router to rip up portions of a net rather than the entire net. We
further extend this router in the following ways:

Minimum Area: Modern processes require materials in a
layer to satisfy some minimum area constraint. To enforce this,
paths are extended to include a running total of the amount of
material in the current layer. Paths are not allowed to propagate
to layers above or below until this amount meets the minimum
value set in the technology file. Once a path is propagated to
a new layer, this running total is reset.

Exclusive Routing Directions: Future process nodes may
require that some materials be drawn in a single direction.
The router is extended with controls to restrict planar path
propagation such that a routing solution has no bends or jogs
in a given layer.

Short-Vertex: A short vertex is defined as a vertex connected
to two edges whose lengths do not meet some minimum
value. These jagged edges may be flagged as DRC errors. A
post-processing step is added to the router to fix these errors
by adding material to smooth out the jagged corner without
creating any new spacing violations.

Out-of-Order Rip-up and Reroute: Unlike the original im-
plementation which only allowed rip-ups in the reverse order
of the route’s completion, the router can rip up portions of
nets out-of-order. The rip-up mechanism has been modified
to consider spacial and temporal locality; the net chosen for
rip-up is the most recently completed net closest to the net
that most recently failed.

There may be instances where cellTK is presented with
a difficult routing problem, causing it to timeout. In such
instances, cellTK uses a checkpoint and replay method that
allows it to generate partially completed cells should an error
occur, reducing the amount of manual effort required by the
user to complete the route.

Examples of 2-input operators automatically generated by
cellTK are shown in Figure 4. Transistor gates common to
complementary chains are aligned and routed, as are the
other nets, pins, and power rails. Figure 5 shows the more
complicated WCHB. As can be seen, both the C-element and
the Nand-gate have their output inverters grouped into their



respective cells. The C-element cell also contains its ratioed
staticizer.

OR gate NOR gate AND gate NAND gate

C-element CF C-element staticizer

2p

2p

Fig. 4. A cross-section of common 2-input operators found in both
synchronous and asynchronous designs. p = wire pitch

L.t

L.e

L.f

R.t

R.e

R.f

(a) Schematic of a
WCHB

(b) Layout of a C-element
with inverter

(c) Layout of
a Nand-gate
with inverter

Fig. 5. Schematic and layout of WCHB cells. The C-element has staticizers
and reset logic (not shown in the schematic).

VI. CELL PLACE AND ROUTE

Once all the cells are generated, they are placed and routed
using a readily-available commercial tool. However, before the
cells can be placed, two additional cells need to be generated: a
filler cell and a welltap cell. Welltaps are placed in a repeating
pattern throughout the layout, and fillers are used to ensure
continuity in the well regions. cellTK can generate these cells
automatically based on the cell height and the well positions
computed from all the generated cells.

In addition to having filler and welltap cells, the logic cells
must meet the following requirements to ensure a DRC and
LVS clean final layout:

Wells: All cells must have uniformly-positioned wells.
Otherwise, wells in adjacent cells may create notches, causing
DRC errors. Once all the cells are generated, they are iterated
over to find the dimensions of the wells satisfying the DRC
rules of all cells. Wells are then drawn in each cell.

Cell Size: All cell heights and widths must be a multiple
of the global routing pitch so cells can be placed on the grid
used by the global router (unlike the gridless contour router).

Placing cells on the global router’s grid makes it easier to
route inter-cell nets, as well as to insert fillers and welltaps.

Cell Pins: All the cells’ pins must be drawn on the global
router pitch. Then, when the cells are placed on the routing
grid, all their pins will also be on the global router’s grid,
connecting the intra-cell wiring to the inter-cell routes created
by the global router.

cellTK ensures that all generated cells meet these minimum
requirements. Once all the cells are generated, including the
fillers and welltaps, they can be fed into the standard cell
placer and router. cellTK can export Library Exchange Format
(LEF) files, so cells can be imported by any placer that sup-
ports this file format. cellTK also exports a Verilog netlist that
captures inter-cell connectivity. Once the cell placement and
routing phase is complete, cellTK merges the resulting layout
with the layout of the individual cells, producing the final
physical implementation. This layout can be compared against
the initial pre-clustered transistor netlist using commercially
available layout versus schematic (LVS) tools, a unique feature
of this flow.

VII. EVALUATION

cellTK is capable of generating customized cells that would
not be found in typical synchronous standard cell libraries,
and would thus require manual effort to implement. Further-
more, licensing restrictions preclude comparative analysis of
commercial standard cell libraries. It is for these reasons that
cellTK is evaluated against several transistor-level netlists for
which a best effort full custom physical layout is available.
The majority of these modules were originally part of an
asynchronous processor designed in a 90nm process technol-
ogy. The evaluated modules are from the main datapath (the
logic and shift units) and the instruction front-end (the fetch
and decode units). These modules were chosen because they
encompass various layout styles, from a structured datapath to
a “sea of gates.” The logic, shift units were compiled using
precharge half buffer reshuffling, similar to the ones found in
MiniMIPS. The fetch and decode modules were decomposed
using similar techniques as the ones used in the CAM mi-
croprocessor [21]. All modules in Table I interface with other
components using an four-phase handshake protocol and all
values are transmitted using a delay insensitive encoding.

The metrics used for evaluating the quality of the resulting
layout are area, throughput (cycle time), and energy (per
cycle). Area is calculated by looking at the bounding box of
the final (placed and routed) design, accounting for the penalty
of having some unused space resulting from sub-optimal
placement. Energy and cycle times are computed using a
transistor-level simulation with resistor and capacitor parasitics
extracted from the final layout. Such detailed simulations
accurately reflect the impact of cell quality and routing quality
on the energy and latency of the generated module.

The results of this evaluation are presented in Table I. Total
transistor count, average number of transistors per unique cell,
and total number of cells are presented. Area is expressed as
a percentage overhead over the full custom implementation of



TABLE I
EVALUATION OF cellTK NONSTANDARD CELL LAYOUT

Txr Avg Total Cell Wire Cap. Area Energy Delay Manual
Count Txr/Cell Cells Height µ M Overhead Overhead Overhead cells

Logic 736 10.2 11 17 2.86 1.69 76% 2% 2% 1,1
14 2.41 1.63 60% 1% 1% 3,3

Barrel Shift 8900 7.42 51
18 1.08 0.98 28% −2% 5% 0,0
17 1.10 0.94 14% 3% 10% 1,1
15 1.12 0.95 6% 9% 15% 7,5

Decode 2698 10.2 56
20 1.87 1.58 92% 26% 25% 1,1
17 1.87 1.61 61% 33% 50% 3,0
15 2.27 1.68 45% 34% 37% 18,8

Fetch 3517 7.67 99
20 0.88 0.71 166% −3% −17% 1,1
17 0.83 0.69 120% −3% −17% 6,5
15 0.86 0.73 93% −3% −16% 16,12

Average (shortest height) — — — — 1.66 — 51% 11.75% 9.25% 15%

10 11 12 13 14 15 16 17 18 19 20 21

0

20%

40%

60%

80%

100%

Cell Height (wire tracks)

C
e
ll 

F
a
ilu

re
 R

a
te

 

 

Logic
Shift
Decode
Fetch
24HT

Fig. 6. Rate of failure as cell heights shrink.

the module. The metrics µ and M represent the mean and
median of the wire capacitance ratios of all nets in the design,
respectively. µ is computed by Eq 1, where C is the extracted
wiring capacitance.

µ =
1
N
×

N∑
i∈nodes

Ci,celltk

Ci,full custom
(1)

Energy and delay are also expressed as a percentage overhead
over the full custom layout. The last metric, the number of
cells requiring manual effort, is represented as a tuple (x, y),
where x is the number of failing cells fixed by transistor
folding, and y is the number of failing cells for some other
reason (usually routing failures).

For each of the evaluated modules, the layout was generated
with multiple cell heights. Figure 6 shows that taller cells have
fewer failures than shorter cells. This is because as cell heights
shrink, there is less room for intra-cell routing. However, at a
cell height of 15 routing tracks, there is a sharp inflection point
in the failure rate. At this height, cell failures are caused by the
transistors, not just by routing errors. For this reason, we did
not evaluate cellTK for cell heights less than 15 routing tracks,
except for the logic core. Generally, the magnitudes and trends
of the overheads incurred by using cellTK over full custom
layout are dependent on the type of module. For example,

Fig. 7. To-scale image of the layout of the decode module. With nonstandard
cells (left), best-effort full custom (right). A cell height of 20 tracks was used.

the area penalty for the logic block is larger compared to the
shifter, a result of the shifter’s more complicated connections:
cellTK is better able to discover difficult routing solutions,
resulting in many more wires routed over cells, whereas the
custom layout requires reserved space for the wiring. This
also explains the small µ for the barrel shifter. Alternatively,
control-heavy modules like the decode, which fall under the
“sea-of-gates” category, have larger area, energy, and delay
overheads when laid out using cellTK. The cluttered nature
of the logical connections presents a difficult problem for
the standard cell placer. Careful planning by designers yields
a near optimal placement and routing of the cells, which
is difficult to achieve with automated tools. An example of
this disparity can be seen in Figure 7. As expected, the
area overhead of the generated layout for all the benchmarks
decreases with smaller cell heights. An unexpected result is
that energy and delay get worse as cell heights shrink. This is
because for smaller cell heights, increased cell density presents
a more difficult problem to the global router, generating worse
routes. We verify this by examining mean net capacitances,
which increase with decreased cell heights.

Another interesting result is that the fetch module gener-
ated by cellTK improves the energy and delay over the full
custom implementation, despite the large area overhead, a
consequence of the module architecture as well as a human’s
inclination for modular design. The fetch module contains an



adder and a register, which in the custom implementation,
are placed side-by-side, whereas cellTK can interleave cells
from these sub-modules, reducing average wire length, and
consequently, energy and delay. This intuition is confirmed by
Figure 8, a histogram of wire capacitance ratios for all nets.
For the fetch module, the majority of nets have capacitance
ratios less than 1, indicating that cellTK produces a layout
where most nets are less capacitive than those in the full
custom implementation. In contrast, the majority of nets in
the decode module have capacitance ratios greater than 1,
incurring significant energy and delay overheads.

0 2 4 6 8
0

5

10

15

20

25

Wire Capacitance Ratio

N
o

d
e

s

(a) Logic

0 1 2 3 4
0

50

100

150

200

Wire Capacitance Ratio

N
o

d
e

s

(b) Shift

0 2 4 6
0

10

20

30

40

50

60

Wire Capacitance Ratio

N
o

d
e

s

(c) Decode

0 1 2 3
0

20

40

60

80

Wire Capacitance Ratio

N
o

d
e

s

(d) Fetch

Fig. 8. Histogram of wire capacitance ratios used to compute µ.

Table II shows the improvement in design time using cellTK
compared to custom implementation by experienced designers.
In particular, the barrel shift and decode units were laid out
by professional layout engineers with 6+ years of experience.
Due to the inaccuracies of quantifying human labor, Table II
contains only approximations for the custom design time.
Nevertheless, the orders of magnitude savings in design time
is still apparent.

TABLE II
DESIGN TIME OF DIFFERENT MODULES

Full custom Design Time celltk Design Time
(months) Computer Human

(minutes) (minutes)

Logic 2 40

Barrel Shift 10 60

Decode 4 480

Fetch 13 1200

As proof of the viability, versatility, and usefulness of
cellTK, two chips have been designed, implemented, and sent
for fabrication using this flow. The first is a 6-channel base-
band GPS processor [26], and the second is an asynchronous
FPGA based on [28]. A summary of the results are presented

in Table III. This demonstrates that cellTK can handle complex
designs with relatively little manual effort as well as easily
port to multiple technology nodes from different foundries.
The GPS is particularly noteworthy because it was designed
using both QDI and bundled-data families of asynchronous
circuits, both of which are compatible with cellTK. Addition-
ally, cellTK is capable of generating cells for both 65nm and
45nm technology nodes.

VIII. EXTENSIBILITY OF cellTK

The cellTK flow described in the previous sections is
designed to generate nonstandard cells to automate layout for
circuit families for which standard cell libraries do not exist. It
is evaluated on asynchronous circuits, but it can be applied to a
much broader range of circuit families, such as domino logic
in the synchronous domain. This section describes how the
existing cellTK flow can be extended for various applications
outside the realm of nonstandard cell generation.

A. Software Modularity

All the methods employed by cellTK to generate cells are
built on top of low-level functions that manage transistors and
stacks, as well as control the contour router. These functions
are grouped together in a library referred to as LayoutTK,
which exposes an API used by cellTK. Note that the interface
to LayoutTK is generic; it has no features that make it
inherently geared towards the work presented in this paper.

This modular software organization is very powerful in that
it allows LayoutTK to be used for a number of different
physical design applications, with cell generation being just
one of them. Indeed, datapath generators or memory compilers
can all be built on top of LayoutTK, given the expressiveness
and versatility of the API.

B. Rapid Feedback

One of the advantages of having this level of automation is
the ability to easily explore various design tradeoffs that would
otherwise be impossible due to the high cost of implementing
physical layout. cellTK allows the user to collect statistics
about the circuit quickly, which can aid in making informed
decisions at all design levels, from the architecture down to
the layout. cellTK provides the following tools and statistics:

1) Height Finder: Cell height is one of the most important
factors affecting the quality of the final layout because, in the
current implementation, all cells must have the same height.
cellTK offers a search feature to find the smallest height for
which cells can be successfully generated. A failure tolerance
value is provided, which sets the number of cells that a user

TABLE III
FULL CHIP DESIGNS FINISHED WITH LAYOUTTK

GPS FPGA
Technology Node. 90nm 130nm
Total Txr. Count 3.20M 1.33M
Unique Cells (manual) 1404 (55) 180 (24)
Cell Height (tracks) 22 15
Chip Dimensions 4mm x 5mm 3mm x 3mm



is willing to manually implement. For example, if it is critical
to have a small row height, the user may choose to minimize
cell height at the expense of accepting a higher failure rate.

2) Diffussion Density and Area Estimation: Before actually
placing and routing a macroblock, cellTK is able to provide
estimates for the diffusion density as well as overall area by
sampling the cells that were just produced. These statistics
are usually available within a couple of minutes of initializing
cellTK, even for million-transistor designs.

3) Comformity Checker: Should cellTK fail on certain
cells, statistics are reported back to the user regarding potential
causes for this failure. Specifically, cellTK reports which
transistors have the largest dimensions, and the cells of which
they are a part, informing the user about where folding should
take place as a potential fix for the failing cell.

C. Fast Prototyping

cellTK is written to generate cells in the traditional 1-D
layout style. Given its modular nature, it is simple to modify
cellTK to generate cells in a different style. For example, a
user might want to explore the tradeoffs of placing transistors
of the same type in multiple rows, requiring an increase in cell
height, but decreasing the cell width, a worthwhile tradeoff if
the design already contains many wide transistors that would
otherwise require folding. Another example is having the
power rails routed on different materials. Traditionally, cells’
power and ground rails are routed on the first metal layer above
and below the active regions, respectively. These power rails
can alternatively be routed on higher metals over the active
region, effectively compressing cell height, allowing rows of
cells to be grouped tighter, and increasing overall diffusion
density.

IX. CONCLUSION

This paper presents cellTK, an automated nonstandard cell
generator and complete design infrastructure to physically
implement an asynchronous digital netlist. cellTK can create
layout with an average 51% area overhead and 12% and 9%
overhead in energy and delay, respectively, compared to hand-
optimized custom implementations, at a fraction of the time.
The core of this flow is a generic and versatile layout library
which can physically implement an arbitrary transistor netlist,
independent of logic family and design paradigm. With this
freedom from predetermined libraries and the great reduction
in layout design time, cellTK enables the widespread adoption
of asynchronous circuits as a solution to future technology
challenges.

ACKNOWLEDGMENT

This work has been supported in part by DARPA award
HR0011-09-C-0002, AFRL award FA8750-09-2-0010, IARPA
award N66001-12-C-2009, NSF award CCF-1065307.

REFERENCES

[1] P.A. Beerel, G.D. Dimou, and A.M. Lines. Proteus: An asic flow for
ghz asynchronous designs. IEEE Des. Test, 28(5), 2011.

[2] P.A. Beerel, R.O. Ozdag, and M. Ferretti. A designer’s guide to
asynchronous VLSI. Cambridge University Press, 2010.

[3] I. Blunno and L. Lavagno. Automated synthesis of micro-pipelines from
behavioral verilog hdl. In ASYNC. IEEE, 2000.

[4] S.M. Burns and A.J. Martin. Syntax-directed translation of concurrent
programs into self-timed circuits. Technical report, DTIC Document,
1988.

[5] D. G. Chinnery and K. Keutzer. Closing the gap between asic and
custom: An asic perspective. In DAC. IEEE Computer Society, 2000.

[6] G.W. Clow. A global routing algorithm for general cells. In DAC. IEEE,
1984.

[7] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE Trans. Pattern
Anal. Mach. Intell., 26(10), 2004.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. Transactions on Information
and Systems, 80(3), 1997.

[9] J. Dion and L.M. Monier. Contour: A tile-based gridless router. Digital,
Western Research Laboratory, 1995.

[10] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware
synthesis language. The Computer Journal, 45(1), 2002.

[11] M.R. Gary and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. WH Freeman and Company, New
York, 1979.

[12] P. Gopalakrishnan and R.A. Rutenbar. Direct transistor-level layout for
digital blocks. In ICCAD. IEEE Press, 2001.

[13] A. Gupta, J.P. Hayes, et al. Xpress: a cell layout generator with
integrated transistor folding. In DATE. IEEE, 1996.

[14] M. Guruswamy, R.L. Maziasz, D. Dulitz, S. Raman, V. Chiluvuri,
A. Fernandez, and L.G. Jones. Cellerity: a fully automatic layout
synthesis system for standard cell libraries. In DAC. ACM, 1997.

[15] Y.C. Hsich, C.Y. Hwang, Y.L. Lin, and Y.C. Hsu. LiB: A CMOS cell
compiler. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
10(8), 1991.

[16] C.C. LaFrieda. Custom-quality wire routing using modern design rules.
Master’s thesis, Cornell University, 2005.

[17] C.F. Law, B.H. Gwee, and J.S. Chang. Modeling and synthesis of
asynchronous pipelines. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., 19(4), 2011.

[18] Y.L. Lin, Y.C. Hsu, and F.S. Tsai. SILK: a simulated evolution router.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 8(10), 1989.

[19] A.J. Martin. Compiling communicating processes into delay-insensitive
vlsi circuits. Distributed computing, 1(4), 1986.

[20] A.J. Martin. Asynchronous logic for high variability nano-CMOS. In
ICECS. IEEE, 2009.

[21] A.J. Martin, M. Nystrom, and C.G. Wong. Three generations of
asynchronous microprocessors. Design Test of Computers, IEEE, 2003.

[22] R.L. Maziasz and J.P. Hayes. Layout optimization of static cmos
functional cells. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 9(7), 1990.

[23] J.K. Ousterhout. Corner stitching: a data-structuring technique for VLSI
layout tools. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 3(1),
1984.

[24] M.A. Riepe and K.A. Sakallah. Transistor placement for noncomple-
mentary digital vlsi cell synthesis. TODAES, 8(1), 2003.

[25] A. Smirnov, A. Taubin, Ming Su, and M. Karpovsky. An automated
fine-grain pipelining using domino style asynchronous library. In ACSD,
2005.

[26] B.Z. Tang, S. Longfield, S.A. Bhave, and R. Manohar. A low power
asynchronous gps baseband processor. In ASYNC. IEEE, 2012.

[27] A. Taubin, J. Cortadella, and L. Lavagno. Design automation of real-life
asynchronous devices and systems. Now Publishers Inc, 2007.

[28] J. Teifel and R. Manohar. An asynchronous dataflow FPGA architecture.
IEEE Trans. Comput., 53(11), 2004.

[29] T. Uehara and W.M. VanCleemput. Optimal layout of cmos functional
arrays. IEEE Trans. Comput., 100(5), 1981.

[30] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The
vlsi-programming language tangram and its translation into handshake
circuits. In EDAC. IEEE, 1991.

[31] A. Ziesemer and C. Lazzar. Transistor level automatic layout generator
for non-complementary cmos cells. In VLSI-SoC. IEEE, 2007.


