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Designing and optimizing large-scale, asynchronous circuits is often an itera-

tive process that cycles through synthesis, simulating, benchmarking, and program

rewriting. Asynchronous circuits are usually specified by high-level, sequential or

concurrent programs that prescribe the intended behavior. The self-timed nature

of the interface gives designers much freedom to refine and rewrite equivalent spec-

ifications for improved circuit synthesis. However, at any step in the design cycle,

one faces an uncountable number of choices for program rewriting — one simply

cannot afford to explore all possible transformations. Informed optimizations and

design space pruning can require detailed knowledge of the run-time behavior of

the program, which is what our simulation trace analysis infrastructure provides.

Tracing entire simulations gives users the opportunity to understand program exe-

cution in great detail. Most importantly, trace profiling captures typical run-time

behavior and input-dependent behavior that cannot always be inferred from static

analysis. Profiling provides valuable feedback for optimizing both high-level trans-

formations and low-level netlist synthesis.

To address this need for profiling, we present a framework for analyzing the

simulated execution of high-level, concurrent programs, as a foundation for itera-

tive optimization and synthesis of asynchronous circuits. The framework includes a

Scheme environment and a library of primitive procedures for handling and query-

ing trace data. Interactivity is essential for analysis sessions where the sequence



of queries to execute is not known a priori. The initial library also includes proce-

dures for some frequently run analyses (built on top of the primitives). Providing

an interface for working directly with the simulation and trace data structures

makes analysis development within our framework both flexible and convenient.

The extensibility of our framework enables compilation-free development and pro-

totyping of custom analysis routines, so users can easily share and build upon the

work of others. The primary purpose of this analysis framework is to enable fu-

ture tools to use profile-driven feedback in automating iterative optimization and

design-space exploration.
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PREFACE

A long, long time ago, in a university not so far away... a battle between

synchronous and asynchronous circuit designers raged. The synchronous empire

sought to maintain its stronghold over the semiconductor industry as the only

way to design large-scale integrated digital systems. However, a band of rebel

asynchronous designers have been holding out at a secret base, evading authorities,

and plotting to launch an assault on the empire.

Part of the divide between the two parties is attributed to commercial design

tool vendors’ unwillingness and inability to support the rebel cause. They see

no profit in supporting the rebels, as the rebels cannot muster enough demand

for special arms (asynchronous tools). And yet much of the rebels disadvantage

remains due to their humbler arsenal of weapons. The rebel struggle is often seen

as an insurmountable uphill battle. Clearly, advancement of the rebels’ technology

must come from within.

This is an over-dramatization of the struggle of asynchronous VLSI, however,

this prevailing sentiment is captured by the opening quote in the Introduction.

Development of asynchronous design tools can only come from within the asyn-

chronous academic community, those who understand its principles.

This dissertation addresses a question of how one goes about designing and opti-

mizing asynchronous circuits. Numerous papers in the literature describe methods

for mathematically translating sequential programs to parallel programs, and par-

allel programs to circuits. But does the theory reflect how circuits are designed in

practice? (In theory, yes, but in practice, no.) The problem is simply that there

are too many ways of accomplishing the same task, each with its own merits and

tradeoffs. There is not only one translation, but many translations possible in

synthesizing asynchronous circuits from high-level programs.
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What navigates asynchronous designers through the sea of design choices? To

some extent it is the limited set of instruments and fundamental principles that

exist, but to this day, many large-scale custom asynchronous designs are guided

by experience, wisdom accumulated from many journeys at sea. Experience comes

from past designs and lessons learned with their successes and failures. However,

if experience were easy to organize and express, there would be more literature on

the trials and tribulations of circuit designers (not found in textbooks). (Sure, I’ll

accept that they might not be exciting to read, and in low demand.) Experience

has been difficult to pass on to new engineers.

Future design tools beckon for a way of expressing knowledge beyond the fun-

damentals, so that the wisdom of the ancient masters would not be lost and un-

necessarily re-learned with each passing generation. The expert systems area of

artificial intelligence is one such approach where a large knowledge base coupled

with an inference engine seeks to solve problems by interactively querying a user.

At the crossroads of choosing my dissertation topic, I was considering several as-

pects of asynchronous circuit design from the high-level concurrent programs to

the low-level circuit details. Synthesis, the lowering of abstraction from high-level

programs to circuits, looked like a path well-trodden by my predecessors. Opti-

mizations within low-level netlists, seemed to have less potential for improvement

than high-level program rewriting and restructuring. To take an analogy from

software development: a structurally optimized program can be synthesized (com-

piled) to potentially better circuits (or machine code).

However, the problem with attempting to statically analyze and restructure

programs (like source-to-source compilation), is that the number of transformations

available at any step is unbounded, and that the benefits of transformations were

often non-obvious, input-dependent, or involved some tradeoff. Rather than spend
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effort on program transformations themselves, another useful contribution would

be some infrastructure for analyzing the merits of transformations, as guided by

the experience of our predecessors. The ultimate goal was an infrastructure for

analyses that would easily extend, as engineers contributed their knowledge. If

the seas were marked with more lighthouses and warning beacons, navigation for

future pioneers would be much easier. Thus, the work within this dissertation

describes a method by which experienced designers can teach their apprentices to

spot lights in the horizon and shallow rocks beneath the waters, and a means for

apprentices to summon the foresight of those who have sailed before them.

David Fang

fang@csl.cornell.edu
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CHAPTER 1

INTRODUCTION

I don’t think it is a technical issue, but an infrastructure support prob-
lem. It’s the chicken-or-egg question all over again: we cannot easily
design asynchronous systems because appropriate tools aren’t available.
And there are no tools, the EDA houses say, because there is no demand
for them.

Bernard Cole, August 2002 [9]

Many advantages of asynchronous circuits over their synchronous counterparts

have been cited for years: robustness to delay variation, design scalability through

modularity, formal verification from concurrent programs, energy efficiency due to

event-driven activity in lieu of clocks. Despite these advantages, the absence of

the asynchronous VLSI design methodology1 from mainstream adoption has been

largely attributed to the lack of design tools2. This dissertation is thus motivated

by the ever-growing need for asynchronous VLSI design tools.

This dissertation corroborates the importance of profiling and analyzing pro-

gram executions in choosing concurrent program transformations for optimization.

The behavior of asynchronous circuits is specified using high-level concurrent pro-

grams ; asynchronous circuits are implementations of concurrent programs. While

there exist many methods for synthesizing circuits from programs, optimizations

in concurrent programs translate to structurally optimized circuits. The work de-

scribed herein is a powerful trace analysis framework for aiding the rewriting and

refinement (transformation and optimization) of high-level asynchronous circuit

specifications, which is an important phase of asynchronous design flows. The

purpose of such an analysis framework is twofold: it helps designers make in-

formed decisions at each iteration of refinement, and it paves the way for auto-

1‘Asynchronous’ design is synonymous with ‘self-timed’ design.
2Other reasons include: skepticism “It will never work,” ignorance “It is too difficult,”

and irrationality “Asynchronous VLSI is the Devil.”
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matically and efficiently exploring otherwise intractable design spaces of equivalent

programs. The strengths of our framework lie in the flexibility and re-usability of

analysis primitives and procedures for rapid analysis development, and interactiv-

ity which allows users to dynamically adjust queries based on information from

earlier analyses.

1.1 Preliminary Background

Before we jump into the design flow of asynchronous circuits, we give a brief

overview of how asynchronous circuits work, and why this design methodology is

worth pursuing over traditional synchronous design.

1.1.1 What is Asynchronous VLSI?

A synchronous circuit is one whose activity is driven by a global clock. During

each clock cycle, circuits evaluate their outputs as logical functions of their inputs.

On each clock edge that demarcates each cycle, signals are latched and held for

the duration of the next cycle, when they are re-evaluated. Thus a global clock or-

chestrates evaluation and latching in alternation, causing computed data to march

along to a single beat in lock-step.

An asynchronous circuit lacks a global clock altogether. Its activity is driven

by communication at its boundaries using local handshakes, which follow signaling

protocols that indicate when local activity may safely proceed, and when it is

complete. Instead of working in lock-step, computation and communication are

entirely event-driven.

One näıve performance metric for a synchronous circuit is its global clock fre-

quency. The clock frequency is limited by the slowest path(s) through logic be-
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tween registers, known as the critical path. Violation of this constraint may result

in the circuit operating incorrectly if signals are latched before their evaluation

is finished. The challenge of optimizing synchronous circuits is in shortening the

critical paths as much as possible, or meeting a target frequency, known as tim-

ing closure. Reaching timing closure can be an expensive phase of synchronous

design verification because it is intertwined with the physical design phase which

determines actual path delays (Section 1.1.2).

Asynchronous circuits are evaluated using their throughput, the average rate

at which a unit of work is done, where each iteration may take different amounts

of time. Critical paths in asynchronous circuits are more subtly defined: asyn-

chronous performance is only determined by paths that are actually exercised at

run-time, as opposed to paths that may be exercised in the synchronous coun-

terparts. This is why asynchronous circuits are said to achieve average-case per-

formance, rather than worst-case performance. For example, in a feed-forward,

asynchronous pipeline without conditional paths, the critical path is simply the

slowest component because all paths are exercised. In a different scenario, a slow

component that is rarely used will have little negative impact on an asynchronous

system’s overall performance.

1.1.2 Impact of timing on design

To understand where design flows for synchronous and asynchronous circuits dif-

fer, we examine the role of timing in both design families. In synchronous design,

timing plays a role from the beginning to the end: a specific clock frequency is

targeted, and pipelining and register retiming is determined as a result of initial

critical path estimation. Static timing analysis (STA) is performed throughout

the design process to verify that the global timing constraints can be satisfied. A
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design that is insufficiently pipelined may fail to meet the target frequency because

paths between clocked registers are too long. An overly pipelined design will waste

area and energy on registers, add unnecessary cycles of latency on certain paths,

and may complicate register retiming. A timed specification is then synthesized to

register transfer logic (RTL), which specifies the logical functions between clocked

registers. RTL is synthesized into gate-level netlists, which in turn, beget transis-

tor netlists. Each step of synthesis lowers abstraction and adds detail, providing

better estimates (but no guarantee) of the actual path delays. The physical design

phase (layout geometry and mask design) further increases timing accuracy with

extracted electrical parameters and delays from analog simulation such as spice.

Placement and routing of circuits should account for delays introduced by wire

length and loading.

Other important provisions in timing validation include (but are not limited to):

test pattern coverage to generate input-dependent timing signatures of subcircuits,

and false path elimination to exclude impossible paths from consideration (which

might otherwise exacerbate the worst-case delays). Timing constraints are further

exacerbated by variability in the fabrication process, degradation, and variations

in operating conditions (temperature, supply voltage, and noise), requiring design-

ers to accommodate additional timing margins. If at any point during synthesis,

timing closure is deemed unachievable, then the previous step must be revisited.

When a timing constraint is not met during operation (through design error or

external cause), some internal signal may be mis-evaluated, potentially causing a

visibly wrong result or other silent malfunction. In spite of these challenges with

synchronous design, there exist a long legacy of synchronous design tools (and im-

mense labor and capital investments) in the industry to sustain and support the

incumbent design methodology for future generations.

4



Asynchronous circuits liberate designers from having to continually mind the

clock. The fact that asynchronous circuits can work correctly with arbitrary, finite

gate delays3 decouples functional correctness from performance optimization. One

nice consequence of this separability is that a large class of asynchronous designs4

can alter the physical pipelining (to improve performance) without affecting the

logical pipelining (correctness). The role that timing plays in asynchronous de-

signs is in performance optimization. Asynchronous design families that do utilize

timing constraints, however, only do so locally in handshakes and communicating

processes without imposing upon any global constraints.

Removing timing constraints from the correctness equation makes it possible to

formally verify successive refinements of concurrent programs; each applied trans-

formation is mathematically proven to be semantic-preserving. The ability to prove

correctness of refinements pays off in an undeniable reduction in design time and

effort, as demonstrated by small academic teams producing complex asynchronous

chips working in first silicon [19, 20, 46, 47]. Verifiability and a short design time

should not be undervalued, especially with the growing size and complexity of

integrated circuits!

The ability to rewrite provably correct concurrent program specifications through-

out the design flow is paramount to asynchronous circuit design practice. Asyn-

chronous circuit synthesis can benefit from work in the field of compilers: program

rewriting is one form of source-to-source translation, and circuit synthesis is the

result of abstraction lowering. Our work described here aims to assist the program

rewriting process, be it manual or automated. To recapitulate, the absence of tim-

ing from the formulation of correctness in asynchronous circuits has far-reaching

implications on its design flow. In the next section, we describe our concept of an

3the quasi-delay insensitive (QDI) family
4slack-elastic designs[42]
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asynchronous synthesis flow.

1.2 Asynchronous Design Flow

Both synchronous and asynchronous designs take high-level inputs and eventually

produce low-level circuit netlists. Synchronous designs start with high-level behav-

ioral descriptions in a language such as Verilog or VHDL. The initial description

is eventually synthesized into RTL and then a circuit netlist, at which point it is

handed off for physical design (always minding the timing constraints).

Most existing and proposed asynchronous design tools follow a flow that takes

some variant of CSP as input and eventually produces a netlist of circuits. Fig-

ure 1.1 is our own rendition of a typical asynchronous synthesis flow diagram. Our

asynchronous flow (not unique) begins with a high-level functional description in

CHP, a variant of Hoare’s CSP [25]. CSP and CHP feature semantics for explicit

sequencing, message-passing, flow control, and concurrency. Appendix A provides

a quick reference to CHP notation and semantics.

Early pioneering work in asynchronous VLSI showed that asynchronous circuits

could be systematically synthesized from an abstract specification in CSP [44].

Syntax-directed translation (SDT) is a method of synthesis where the syntactic

constructs map directly into asynchronous circuits that implement the primitive

semantics [5]. With SDT, the quality of the resulting circuits depends on the

characteristics of the source program; a program written sequentially will pro-

duce sequentially operating circuits. Section 2.3.1 discusses conventional tech-

niques for synthesizing asynchronous circuits from high-level concurrent programs:

dataflow-driven translation, template-based translation [6, 12, 68, 77]. Dataflow

techniques succeed at decomposing larger blocks of code into a set of primitive

nodes. Template-based translation is suitable for pattern-matching against sets
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Figure 1.1: Asynchronous circuit synthesis flow

of known constructs and their corresponding circuits. While synthesizing circuits

from programs using any of these techniques produces correct circuits, the resulting

circuits are unlikely to be optimized because the input programs may lack explicit

parallelism. Concurrency is attained by rewriting the source program explicitly

into parallel, communicating processes. In theory, such rewriting can be done
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automatically with the aid of a source-to-source compiler using static program

analysis. In practice, rewriting is often done by hand.

Since the quality of circuits produced by a direct translation depends strongly

on the input (of which there may exist numerous equivalent versions), it behooves

a designer to optimize the input of the synthesis phase. Without proper analysis

tools, a designer often relies on experience when evaluating the consequence of each

high-level, structural transformation. Figure 1.1 emphasizes the use of feedback

between various phases of synthesis5, represented by dashed edges. For example,

back-annotating timing from lower level simulations to higher level simulations

improves the accuracy (while retaining high-level simulation efficiency) and aids in

timing verification [33]. Providing feedback directives (say, derived from profiling)

to the circuit translation phase may result in better choices in circuit optimizations.

However, the impact of such optimizations cannot compete with the potential

available from restructuring the concurrency and control flow of the circuit. Our

primary goal is to aid rewriting high-level, concurrent program specifications of

asynchronous circuits. Transformations applied to the source program should be

justified by the expected benefits on a given set of inputs.

The other inputs to the design flow are test workloads or benchmarks. The

test inputs should reflect typical conditions and data that the circuit is expected

to encounter; for optimization purposes, they serve as a training set. Either high-

level or low-level (post-synthesis) simulations can be used for comparison. For the

work described in this dissertation, we use a high-level simulation of concurrent

programs to assess each program’s potential to produce optimized asynchronous

circuits (Section 3.2). A high-level simulation allows one to evaluate the merits

of the structure of a concurrent program without assuming details of how the

5By ‘synthesis’, we mean lowering the of level of abstraction while increasing the level
of detail of specification.
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resulting circuits will be synthesized. Program analysis and transformation at a

high level is agnostic with respect to the specific asynchronous circuit family used in

synthesis, and is thus, widely applicable to all asynchronous circuits design flows.

The simulation and analysis framework we present is geared towards assisting

rewriting and high-level optimization of concurrent programs.

1.3 Challenge and Contributions

There’s more than one way to do it.

Perl motto and philosophy

“I used to write in Perl a lot. Nowadays Perl scares me. It looks like
an explosion in an ASCII factory.”

Diederik van der Boor,
dot.kde.org, 2007-07-04

(and many others before him)

The major challenge of rewriting or restructuring programs is that the space

of functionally equivalent programs is unbounded; it is impossible to consider all

equivalent versions of a program, simply because there are infinitely many “obvi-

ously poor” legal transformations. Compiler writers realized long ago that aggres-

sive optimization is an iterative process. To know where one should spend effort on

optimization and detailed analysis, one should concentrate on the most frequent

paths and the most critical paths as found by (simulated) execution. Hotspots

and critical paths indicate where transformations are likely to have the greatest

impact, and can be used to prioritize program rewriting iterations.

Apart from the obviously good and bad transformations, the benefit of a trans-

formation often depends on the local context in question, and moreover, the inputs

and circumstances under which a piece of a program is executed. Chapter 4 gives
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many examples of transformations whose benefit depends on run-time conditions,

not deducible from any static analysis. Many candidate transformations exhibit a

tradeoff between metrics such as performance, energy, and area. The designer (or

source-to-source compiler) has the daunting task of choosing which transformations

to apply. Simulation feedback and profiling will ultimately justify these decisions.

Coupling static program analyses with run-time profile analyses increases the po-

tential to effectively and aggressively restructure high-level programs and apply

low-level synthesis optimizations [34]. The job of our analysis infrastructure is to

make program evaluation more accessible, informative, and flexible to users.

Our contribution to the asynchronous circuit design community is a high-level

simulation trace analysis framework, intended to help designers make informed

structural optimizations of asynchronous systems, especially where optimization is

non-obvious. Our overall infrastructure includes a concurrent program compiler for

the CHP language, and an event-driven simulator, from which traces can be pro-

duced for detailed run-time analysis. The analysis framework provides an interface

for viewing and mining trace information useful to the designer, and complements

static program analysis for choosing program transformations. This dissertation

describes in detail the analysis primitives and procedures available to the user,

and demonstrates how useful analyses are constructed within the framework. We

describe several cases of design choices where run-time analyses reveal strengths

and weaknesses (not statically inferable) that can be exploited for program opti-

mization.

1.4 Outline

There is much room for development and improvement of asynchronous circuit

design tools. The design flow we propose touts program rewriting as having an
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important role in design: gradually refining the concurrent program so that circuits

produced by direct synthesis methods will be structurally optimized with respect

to a given set of workloads. Program rewriting is orthogonal to all other phases

of asynchronous circuit synthesis. The difficult problem of evaluating rewritten

programs is aided by our new simulation trace analysis framework, which provides

the means to extract detailed performance feedback from any execution. This

dissertation describes the analysis framework and demonstrates its benefits.

In Chapter 2, we discuss related work in asynchronous VLSI that precedes our

own, covering parallel program evaluation and existing asynchronous design tools.

Chapter 3 describes our high-level simulation and trace analysis infrastructure,

and justifies our approach. Chapter 4 describes how analyses can be constructed

to assess the merits of other concurrent program transformations. In Chapter 5,

we present some case studies that further demonstrate the utility of our analysis

framework. Chapter 6 concludes this dissertation.
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CHAPTER 2

BACKGROUND: RELATED WORK

The work for this dissertation spans several fields: parallel programming, per-

formance analysis, asynchronous circuit synthesis. We start with a brief overview

of parallel programs and their relation to asynchronous circuit design. The major-

ity of our work builds upon ideas from performance evaluation of software parallel

programs. Lastly, we summarize the current state of existing asynchronous circuit

synthesis tools, and some of their attempts to incorporate performance profiling.

2.1 Concurrent Programming Languages

Parallel programming has roots in both the software community and in hardware

design. Digital circuit design could be construed as one form of parallel program-

ming: synchronous circuits change state at the beat of a global clock as determined

by the logic between clocked latches, while asynchronous circuits compute and com-

municate in an event-driven manner using local handshakes on channels. Explicitly

expressing concurrency is very befitting for hardware descriptions languages.

Hoare’s Communicating Sequential Processes (CSP) is one such language for

expressing concurrency and communication [25, 26]. In CSP, processes communi-

cate data by passing messages over channels; send-receive action pairs (over the

same channel) are synchronized point-to-point, i.e. when one of them is reached,

it waits until its counterpart (possibly in another process) is reached before both

sides proceed. (Send and receive actions are atomic and blocking.) Communicating

Hardware Processes (CHP), a close variant of CSP, was used by Martin to compile

parallel programs into delay-insensitive circuits [44, 45]. A quick summary of CHP

can be found in Appendix A. We mention other synthesis methods in Section 2.3.

Other languages used for asynchronous circuit specification and synthesis share
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essentially the same semantics as CSP, dressed in different syntaxes. Variants of

CSP provide additional constructs that make concurrent hardware descriptions

more convenient or more expressive. Tangram [73] and Balsa Synthesis Tools [12]

are similar to each other; the latter is a publicly available variant of the former,

which is proprietary. Balsa contains some flow control constructs that are not in

CHP, (e.g. sequential if-else) but can be expressed (perhaps less conveniently) using

CHP primitives. We have extended our own implementation of CHP with syntac-

tic loop-expansions of repetitive constructs for convenience. TAST, from TIMA,

features its own CSP variant (not publicly available) [60]. Haste is the CSP variant

used by Handshake Solutions [55]. Occam adds the abstraction of dynamic process

lifetime, with process instantiation and termination, which is suitable for abstrac-

tion in parallel software [69]. The abstraction of process lifetime may be useful for

dynamically reconfigurable hardware, such as asynchronous FPGAs (AFPGA).

The purpose of these languages is to specify the high-level behavior of the

asynchronous circuits to be synthesized, without getting involved in the imple-

mentation details such as channel encodings and handshake protocols. We use

CHP as the high-level language in our design flow because it is simple, and has

worked sufficiently well in the past. The choice of language is not pivotal to our

analysis infrastructure; the key concepts in our simulation analysis framework are

applicable to any CSP-like language.

2.2 Performance Evaluation of Parallel Programs

Analysis of parallel programs and hardware share a common purpose: to identify

performance bottlenecks. Many techniques for performance evaluation of parallel

programs inspire similar approaches to evaluating parallel hardware. The following

attributes of parallel performance analysis systems are usually desired [21]:
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1. abstraction — The ability to reason about events at a higher level given low-

level details of execution helps users comprehend large volumes of information

more easily.

2. transparency — The ability to measure a system without perturbing the

measurement itself is valuable for accuracy.

3. interactivity — The ability to adapt and modify analyses based on obser-

vations enables users to iteratively and efficiently experiment with different

solutions.

4. portability — Techniques should not be constrained to a particular model

or implementation. Since there are different concurrent programming lan-

guages, analysis tools that support different languages variants would be

more valuable than those limited to only one language.

2.2.1 Measurement and Tracing

Next, we explain how these traits have manifested in parallel software analysis,

and how some of the same techniques carry over to hardware analysis.

Instrumentation and sampling. There are several ways of benchmarking

parallel programs beyond just measuring execution time. By instrumenting a pro-

gram with measurement code (in source or binary image), one can generate partial

traces of detailed measurements for online or offline analysis. Since instrumen-

tation often perturbs and prolongs the timing of program execution, it comes at

the expense of measurement transparency. The convenience of instrumentation

comes at the cost of accuracy, depending on the invasiveness of modification. The

Paradyn performance analysis tool reduces measurement perturbation and the vol-

ume of traced data by dynamically instrumenting the executing program and non-
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invasively sampling counters updated by the instrumented code [48, 50]. Pablo

is an earlier portable and scalable analysis environment capable of dynamically

adjusting the level of instrumentation using counter thresholds for feedback [58].

The pC++ performance analysis environment featured both runtime analysis and

offline trace-based profiling [40]. More computationally expensive work was typi-

cally reserved for offline evaluation. A benefit of dynamic instrumentation is that

queries can be constructed and deployed at run time, enabling dynamic experi-

mentation and refinement of measurements. Periodically sampling measurements

of a running program can be less intrusive than instrumentation, but may overlook

details that are key to the understanding performance problems [24, 51, 52]. The

‘state’ of parallel hardware is not representable as call-stacks, but rather, a dis-

tributed set of program points. Thus, the stack-sampling approach taken by the

gprof sequential program profiler does not fit the concurrent hardware model [22].

Simulation tracing. Simulating an executing parallel program, however, es-

sentially decouples measurement from execution. Simulation affords the ability

to trace every event in detail without perturbing the simulated execution (trans-

parency), at the cost of trace storage. Alternate approaches trace only what is

required to perform the desired analyses [29]. However, one does not always know

a priori what information should be exacted before a program is executed; obser-

vations can inspire new avenues of investigation [21]. Trace storage in our design

flow is justified by the potential need for fine-grain details of execution. In our

analysis infrastructure, all analyses and refinements are performed offline on saved

traces. A full trace is re-usable across many analyses on the same run; a new trace

is required only when the input program or the workload changes. The storage

cost and file access performance overhead of tracing can be a drawback when only

the simplest queries are desired. For example, lightweight, on-the-fly counters in-
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strumented directly into the simulation to mitigate the need to write and read a

trace file. The flexibility of tracing and offline trace analysis is appealing when the

analyses demanded are more diverse, detailed, and complex.

Simulation replay. Another benefit of storing a full trace is that it enables ef-

ficiently replay of the simulation, potentially revealing details that are not recorded

in the trace file. Seeking to arbitrary times in the execution history can be ac-

celerated with incremental checkpoints embedded in the trace file. Full tracing

is especially useful for animated visualization of event activity for debugging and

evaluation [21].

Version database. Over the course of concurrent program design and evolu-

tion, a designer is likely to amass a large history of data for every set of analyses

run on each revision and input set. In addition to instrumentation and mea-

surement, SCALEA features a database for storing results of experiments from

measuring various versions of a parallel program [72]. Maintaining a database of

analysis summaries would be very useful for a design space exploration engine to

compare across versions of refinements of a parallel program. We mention the

use of databases because they would complement any analysis and measurement

framework for an iterative design process.

The ability to obtain measurements from a simulation (as opposed to inva-

sive instrumentation or sampling) gives us the freedom of performing arbitrarily

detailed analyses on execution traces, at the cost of trace storage. Our analysis

infrastructure relies heavily on the simulation aspect of our design flow.

2.2.2 Program Simulation

We briefly mention a few simulation environments from which we draw principles

for our own simulator. OCCARM is an Occam simulation model of the Amulet1
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asynchronous ARM processor [69, 70]. The OCCARM simulation environment fea-

tured a monitoring process for collect profile information: occupancy, utilization,

throughput, and other internal process state. Measurements are taken according

to models of the concurrent processes and explicitly communicated to the monitor-

ing processes. Rather than pass information to a monitor process, our simulator

logs every atomic event and state change to a trace file as it executes.

EDPEPPS1 is a design environment for portable parallel applications that fea-

tured a message-passing virtual machine simulator. The full-system simulator is or-

ganized in layers, spanning the hardware, operating system, message-passing layer,

and running applications [11]. Since we target only circuit design, our discrete

event simulator models only hardware. EDPEPPS includes numerous simulation,

trace-analysis, and visualization modules, and is easily extensible and integrated

with other tools and compilers. Our long term goal is to use our trace analysis

framework to drive high-level program transformations in feedback-directed com-

piler optimizations. Eventually, support for mixed-mode simulation would allow

one to map circuit-level events back up to a higher-level constructs.

We describe our simulator further in Section 3.2.

2.2.3 Trace Analysis

There are several existing tools for analyzing traces of parallel programs offline.

One of the goals of our trace analysis framework is to provide an interface from

which analysis libraries can be easily developed. Medea is one tool for processing

trace files produced by monitors during the execution of parallel programs [8].

Medea provides a collection of statistical and numerical analysis modules, which

are easy to integrate and coordinate with other tools. Their analysis of trace files

1Environment for the Design and Performance Evaluation of Portable Parallel Soft-
ware
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is aimed at constructing numerical models of performance as a function of input

parameters, for performance prediction. IPS-2 also features a rich library of trace

analyses [27, 49].

A proper interface is important for any trace analysis tool. Analysis tools often

feature their own interface language to operate on traces or databases of experimen-

tal data [4, 63, 76]. Model-driven analysis systems use separate input languages to

formulate analyses and queries at a high level, while a compiler automatically emits

low-level instrumentation and analysis code [29]. We use Scheme as our interface

language and provide an API consisting of primitive operations and predicates,

thus leveraging all of the capabilities and functionality of the host language (Sec-

tion 3.3). A layered approach decouples the details of the trace file format from

the implementation of the analysis library, leading to better portability.

2.2.4 Temporal Analysis

A large class of trace analyses examine the properties of a program over time

(temporal analysis). Properties can vary from simple (e.g. value of a variable) to

complex (e.g. comparing activity factor between processes). The entire history of

a trace can be classified according to such properties. A summary of time spent

in each category or state is called a time histogram.

The Occam debugging environment described by Goldszmidt supported check-

ing of temporal logic assertions on a program’s execution history, suitable for

debugging parallel programs [21]. The IPS-2 tools were capable of accumulating

user-specified time histograms computed on traces [49]. The ability to construct

arbitrary complex time histograms and queries is valuable for tailoring analyses

to specific applications. Our trace analysis framework supports evaluation of arbi-

trary functions that sweep over traces for temporal analysis (Section 3.3).
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Complex probe functions (run over a trace) can be formulated for debugging,

performance and activity analysis. For example, one can approximate the dynamic

activity factor by sweeping over all events with a fixed-size time window. One can

verify the exclusiveness between two processes by ‘monitoring’ the state of the pro-

cesses. Temporal analysis is the basis for detecting phase changes in programs. It

is often desirable to partition the trace of a parallel program into distinct phases,

and analyze or optimize each phase separately. Since the notion of phase can be

very application-specific, it is important that users be able to apply custom func-

tions to catch phase boundaries. Phase detection functions can be formulated by

matching low-level activity patterns that translate to some high-level behavior [59].

2.2.5 Expert Systems Approaches

Expert systems is a field of artificial intelligence that utilizes some subject-specific

knowledge of human experts in a knowledge base. The inference engine uses

the knowledge base to present a series of questions to the user in an attempt to

determine an answer in the subject domain. Some common examples of expert

systems are found in technical troubleshooting and medical diagnosis. While we

do not employ expert systems techniques in our framework, we adopt the concept of

being able to extend a knowledge base of analyses and diagnostics for performance

optimization.

Parallel programming and circuit design are domains where experience often

helps with problem solving and diagnosis. Merlin is a tool for automating parallel

program performance analysis that employs a knowledge base of rules that map

performance symptoms to possible causes, and causes to possible solutions [34].

As a designer’s experience grows, the knowledge base can be appended with new

expertise in performance diagnosis, making Merlin useful to non-expert parallel
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programmers. KAPPA-PI organizes its knowledge base into a hierarchy of possi-

ble performance bottlenecks from general rules down to specific rules [15, 16]. For

example, a “frequently blocked sender” is a subclass of general “communication

issues,” and “barrier wait imbalance” can be a subclass of general structural prob-

lems. Typical analysis sessions start with the same core set of diagnostics, followed

by different refined diagnostics with each iteration.

With our analysis infrastructure, one can construct an expert system for perfor-

mance diagnosis by building a knowledge base of rules for diagnostics that trigger

refined analyses and queries, which invoke routines from an analysis library.

2.2.6 User Interface Design

For analysis tools to be accessible to non-experts, it is essential to be able to

present information in a structured (and often graphical) manner. Nearly every

mentioned tool for performance analysis of parallel programs touts some graphi-

cal user interface and visualizations of analyses. Guidelines for effective interface

design have been described in [54]. Although we have not developed any beautiful

graphics along with our infrastructure, we do make information easily available to

data visualization tools to leverage our work and others’ work.

2.3 Asynchronous Synthesis Tools

Our review of other asynchronous circuit synthesis tools covers two aspects: meth-

ods for synthesizing circuits (lowering abstraction level from concurrent programs),

and existing integrated design flows.
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2.3.1 Circuit synthesis methods

Our work does not focus on circuit synthesis; however, understanding various ap-

proaches to synthesis gives some insight on how the results obtained from high-level

trace analyses can direct better synthesis, and how high-level transformations may

improve the results of synthesis. Syntax-directed translation (SDT) was the first

approach used to synthesize asynchronous circuits from high-level concurrent pro-

gram descriptions [6, 44, 45]. With SDT, syntactic constructs (such as sequence,

concurrency, communication, and selection) are recursively mapped to circuits that

implement these primitives. However, without fine-grain process decomposition,

the resulting circuits would exhibit only as much concurrency as was explicitly writ-

ten. Projection was introduced to partition variable assignments into send-receive

pairs to facilitate process decomposition [41]. Process decomposition results in

smaller and simpler processes capable of achieving greater throughput.

Once concurrent processes are factored into primitive processes, they can be

handed off to circuit synthesizers. A. Lines described a method for synthesizing

pipelined quasi-delay insensitive (QDI) circuits using known templates for common

four-phase handshake protocols [38]. By changing relatively few subcircuits to

implement different functions, a designer can easily write netlists, even by hand.

The circuit templates can be chosen based on size, latency, throughput, energy,

and scalability. This method of synthesis is typically reserved for the leaf cells of

finely decomposed concurrent processes. Since there can be more than one way to

synthesize circuits, this translation step can be guided by hints from both high-

level and low-level performance profiling. For example, a non-critical path may

favor smaller circuits for saving area without compromising performance.

Petri Nets (PN) are also commonly used to describe handshaking protocols and

for synthesizing asynchronous circuits with tools such as Petrify [10, 35, 36, 37].
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Since there are several handshaking protocols to choose from and multiple correct

implementations for each protocol, run-time profiling of the high-level program can

help the above synthesis methods decide which implementation is more suitable,

depending on path criticality.

The ACK synthesis tool (no longer maintained) targeted synthesis of datapaths

with (one or more) separate controllers from high-level descriptions, initially in Ver-

ilog or VHDL [31]. The controls for the datapath are synthesized as asynchronous

state machines, using control graph partitioning to simplify synthesis. The compu-

tation portion of the datapath leverages standard synchronous (VHDL) back-end

synthesis. The TiDE tools translate Haste program descriptions into bundled-data

style circuits with a 4-phase control handshake, which requires separate timing val-

idation of delay elements [64]. The leaf circuits are mapped to a standard cell li-

brary, chosen by the user, using standard EDA tools. The “different where needed,

standard where possible” mantra, where existing synchronous tool flows are used

to a great extent, is prevalent among several asynchronous synthesis tool chains —

circuit synthesis may not be optimal, but they provide a short path2 to a working

design flow.

Message-passing concurrent languages fit extremely well with the conventional

dataflow framework in optimizing compilers. Data-driven (or dataflow-driven) syn-

thesis is another approach that produces circuits in a manner purely dependent on

data dependencies [68, 77]. Data-driven synthesis produces finely decomposed and

deeply pipelined processes, sometimes overly pipelined on latency-critical paths.

One proposed solution was to apply sequential and parallel clustering algorithms

to un-pipeline selected processes [78]. Clustering is also applicable to FPGA-

style synthesis, where a computation is mapped onto a logic fabric with fixed

resources [56]. Where static analysis runs into limitations, clustering heuristics

2low development cost, time, and effort
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would benefit from guidance based on profile analyses of simulated executions.

2.3.2 Existing tool flows

The methods described above have been harnessed in tools developed in academia

and industry. We summarize the simulation and analysis capabilities of some of

those tools.

The Balsa Synthesis Tools, based on Tangram, follow template-based, syntax-

directed synthesis, and provide a library of primitive components [12, 73]. Balsa

includes a simulator that produces a trace of channel and process activity for

profiling [13]. Balsa provides a variety of visualizations to aid in debugging and

analysis, such as deadlock causes. The Balsa designers realized the importance

of being able to iteratively refine a source description of a concurrent program to

optimize the circuits produced by syntax-directed translation [32]. However, the

provided analyses are very rudimentary and not easily extensible3, and there is

little headway towards assisting program rewriting using the existing analyses.

Profiling simulation of asynchronous circuits already exists in synthesis tools.

The TIMA Asynchronous Synthesis Tool (TAST) includes an activity profiler ca-

pable of collecting frequency statistics about execution paths and channel/variable

data [60]. The activity profile acquired using TAST or similar tools is intended to

guide optimizations:

• Area and energy can be reduced by eliminating unused circuits, or down-

sizing infrequently used circuits.

• Performance may be improved by scheduling more aggressively on frequent

critical paths.

3source code editing and compilation required
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• Electromagnetic emissions can be reduced by scheduling activity more evenly

over time.

One particularly novel application of the TAST profiler used frequencies of a

multi-way selection to implement an unbalanced multi-level selection favoring the

most frequent case (which they called “choice structure optimization”). Simi-

lar optimizations were done by hand in the design of the MiniMIPS’ datapath,

Lutonium datapath, and sensor network asynchronous processor (SNAP) datap-

ath [30, 43, 47]. Our approach to profiling is to provide an extensible framework

from which arbitrary analyses can be constructed and run on saved execution

traces.

The Timeless Design Environment (TiDE) tools from Handshake Solutions

synthesize self-timed circuits by mapping the high-level program (in Haste) into

a Verilog netlist in a bundled-data style (separate control and data) and uses

standard commercial tools for back-end synthesis [64, 66, 71]. TiDE’s simulator

interfaces to a graphical interface for basic performance and coverage analysis, but

the interface lacks the ability to develop and extend analyses. Their synthesis flow

supports low-level synthesis directives, such as handshake protocol selection, at the

source-level, however such annotations are not yet automated. The design flow does

not provide a mechanism for feeding the results of performance profile analysis to

other parts of the tool chain. TiDE’s simulation environment supports behavioral-

level (Verilog) and handshake-level execution modeled in C. In contrast, our high-

level simulator, chpsim, models handshakes as point-to-point synchronization in

event-driven, data-driven execution (Section 3.2).

Nielsen, et al. presented a synthesis flow that more closely resembles that found

in synchronous design flows [53]. Their front-end converts a behavioral description

(in Verilog, VHDL, or System C) into a control dataflow graph (CDFG) inter-
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mediate representation, which is then translated into a CSP-like language for the

asynchronous back-end for syntax-directed synthesis in Balsa [12]. Since the back-

end is a straightforward mapping to circuits, Iterative refinement is done at the

CDFG level. They evaluated the effectiveness of synchronous synthesis techniques

on a fundamentally asynchronous representation. Their synthesis featured auto-

matic resource sharing and constraint-based design space exploration of low-level

circuits, algorithms for scheduling, allocation, and binding, and suitable mapping

from CDFG to Balsa handshake templates. The phases that would best utilize

run-time profile information are the CDFG transformations, and the design explo-

ration of low-level synthesis.

2.3.3 The common ground and missing link

One common theme surrounding many asynchronous design flows is that effective

circuit optimization is an iterative process. Many tools feature simulation profiling

and analysis to help designers identify bottlenecks early in the design phase. How-

ever, those analysis tools lack a flexible interface for constructing and programming

arbitrary analyses for reuse. Our contribution provides extensible profile analyses

from the simulation of high-level concurrent programs and a functional program-

ming interface to work with trace data. The resulting profile information can be

used to drive subsequent iterations of high-level program transformations, initially

through human interaction or eventually through automated compilation.

Much effort in asynchronous synthesis flows has been devoted to mapping of

concurrent logic to handshake components and circuits. However, one aspect that

is missing from asynchronous design flows is high-level program restructuring and

rewriting. Aside from process decomposition, there has been little work the source-

to-source transformation, which has a great potential to yield structurally opti-
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mized circuits. The dissertation continues with the description of our simulation

and profile analysis infrastructure (Chapter 3), and a survey of local program

transformations that can exploit run-time profile information.
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CHAPTER 3

PERFORMANCE EVALUATION INFRASTRUCTURE

Randall Munroe, http://www.xkcd.com/297/

This chapter describes the simulation and analysis infrastructure for evaluating

asynchronous circuits at a high level of abstraction. First, we briefly describe the

concurrent program compiler. The second part describes the execution model of

the high-level asynchronous system simulator. The third part describes features of

the trace structure along with primitive trace query operations. Chapter 4 then

shows how analyses constructed within our framework can be used to aid program

transformations.

3.1 Language and Compiler

The Tao gave birth to machine language.
Machine language gave birth to the assembler.
The assembler gave birth to the compiler.
Now there are ten thousand languages.
Each language has its purpose, however humble.
Each language expresses the Yin and Yang of software.
Each language has its place within the Tao.
But do not program in COBOL if you can avoid it.

The Tao of Programming
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The input language used in our asynchronous design flow is named Hierarchical

Asynchronous Circuits (HAC). The language supports common semantics found

in HDLs: parameterized type definitions, type-safety, instances, arrays, and port

connections. The key sub-languages are CHP for high-level concurrency semantics,

and PRS (production rule set) for logic specifications. Sources can be (but need not

be) compiled into object files that are used (and re-used) by other back-ends of the

tool chain. For performance and memory efficiency, type and instance information

is shared to the fullest extent.

The object file saves other tools (such as simulators) the effort of storing re-

usable, stateless information. All of the type and hierarchy information (defini-

tions, instances, variables) stored in the object file is accessible to the user through

the same programming interface used for trace analysis (Section 3.3). Maintaining

precise hierarchy is essential to the ability to associate expanded constructs with

their origins in the syntax tree. The ability to trace back variables and events in

the simulator back to the source is vital to constructing informative analyses.

3.2 CHP Simulator

The simulator, chpsim, is launched with an object file that encodes the whole

program. Upon initialization, space is allocated to capture the entire state of the

simulation: the whole program event graph, the values of all variables, and event

queues. As the simulator executes events step-wise, the state is updated incremen-

tally, and may be logged to a trace file for offline analysis. Our description of the

chpsim simulator consists of three parts: the event model, execution algorithm,

and tracing.
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3.2.1 CHP Event Graphs
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Figure 3.1: Syntax-directed translation of CHP to event graphs
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Figure 3.2: CHP event graph legend

The CHP source is expanded into a whole-program event graph (more specif-

ically, a concurrent control flow graph) with a straightforward syntax-directed

translation, analogous to circuit synthesis translations [6, 45]. Figure 3.1 sum-
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marizes the translation mappings. A node in the fully expanded event graph

represents an atomic action, and an edge represents a direct sequence relationship

(edge (S, T ) means S’s completion may initiate T ).

Figure 3.2 shows the legend for node shapes for all CHP event graphs in this

document. For loops, the last event of the body points back to the first event of

the body. Atomic events include assignment statements (x := y), condition waits

([G];), sends, receives, library function calls1, and ‘skip’ actions. Sequences are

just successor chains of events. Sequences that consist of only atomic events are

analogous to basic blocks in conventional control flow graphs (CFG). Concurrent

events initiate all successors in parallel and wait for all branches to finish before

continuing. Deterministic and non-deterministic selections follow only one branch

depending on the state of the guards. When no guards are true, the selection

blocks waiting until a guard becomes true. Communication occurs when a send

and receive event (in different processes) accessing the same channel are reached,

at which point data is passed and both events complete. Sends and receives are

blocking and serve as point-to-point synchronizations. The while-do construct is a

two-way deterministic selection, with one branch entering the body (which returns

to the selection), and an exit branch. Recursive expansion of these CHP constructs

results in an event subgraph per process2. Each event node in a process subgraph

contains a back-reference to the CHP syntax tree node that produced it, which

directly maps any global event to its source (Section 3.2.3).

Each process contains one entry edge to its event subgraph, pointing to the

starting program point for each process3. Unlike sequential programs which have

1chpsim features dynamic loading of plug-in libraries of user-defined functions in
C++, made possible by GNU Libtool’s libltdl.

2Actually, only one subgraph is stored per unique type because there are no interproce-
dural edges, while the simulation state maintains per-process graph markings. Processes
only directly interact with each other through channels and shared variables.

3A process with explicitly concurrent sub-processes will immediately initiate multiple
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only one active program point at a time, concurrent programs have at least one

per process. Within a process, explicit concurrency begets multiple active pro-

gram points (analogous to threads in parallel software). A single process can be

visualized as a marked event-graph with one or more markers, and a concurrent

whole-program can be seen as a collection of such processes. Event-graph markers

may only move forward along edges, where the node type and current state deter-

mine which outgoing successor edges are followed. Simulation terminates when no

events are able to execute and move forward.

The state of a CHP simulation includes a list of all active events (or marked) in

the whole-program marked graph (typically few per process), and the value of all

state variables, including channels. In the next section, we define what it means for

an event to be active. The entire state can be checkpointed and restored to resume

simulation later. A checkpoint file is associated with the same object file used to

run the simulation so the checkpoint need not replicate hierarchy information.

Checkpointing is useful for a simulation-based analysis infrastructure because it

allows short simulations to be ‘paused’ and preliminarily analyzed before resuming

selected experiments longer to collect more statistics.

3.2.2 Execution Algorithm

The simulator executes events in a purely event-driven manner, which naturally

follows the way asynchronous circuits work. The ‘lifetime’ of a CHP event is

divided into several states (Figure 3.3):

• inactive: The event is not queued for evaluation or execution. An event
leaves the inactive state when all of its required predecessors have executed.
An event becomes inactive immediately after it has executed. The only
events that wait for more than one predecessor are the join events at the tail

events in parallel.
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Figure 3.3: chpsim event life cycle

of every concurrent section; all others wait for only one. Most of the time, a
majority of events will be inactive.

• wait-to-eval: The event is waiting for a delay to be checked for readiness
(first time). This corresponds to a ‘prefix’ delay that is applied to every event.
The time cost for each event is paid up-front during this phase. At the end
of this period, if the event is evaluated ready, it is queued for execution.

• blocked: The event has been checked for readiness, but found not ready,
so it must block and ‘subscribe’ to state variables whose value may affect
its status. Condition-wait actions simply wait for the guard expression to
become true. Communication actions may block on channels. Events that
wake-up to value changes will either remain blocked or unblock for immediate
execution.

• ready-execute: Event is ready to execute immediately. Events in this queue
have already paid their delay, and are executed (one-by-one) with the same
timestamp. Upon execution, an event becomes inactive.

Every occurrence of an event incurs its delay exactly once: before it is evaluated for

execution for the first time (as it transitions to ‘wait-to-eval’). Re-evaluations in

the blocked state and the actual execution itself incur no additional delay. Active

events are those in the ‘wait-to-eval’, ‘blocked’, or ‘ready-execute’ states.
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Blocking and dependency subscribing. Events that are checked and found

not ready to execute are said to block waiting. For example, send and receive events

may be blocked by the channel(s) referenced in the communication action, and se-

lections statements may be blocked by the variables in the guard expressions. A

newly blocked event ‘subscribes’ to a set of dependent variables which can pos-

sibly unblock the event when their values change4. The subscriptions represent

dynamic dependencies: the set of events subscribed to each variable changes at as

events block and unblock. Each event that executes ‘notifies’ its modified variables

(including channels) for re-evaluation. Events that are ready to execute are un-

blocked and placed in the ready-execute queue, while others just remain blocked

and subscribed. Since inactive events are not subscribed to variables, they are

never notified by variable updates.

To recap, events are evaluated for execution after they have waited a prefix

delay. If the initial evaluation blocks execution, then the event subscribes to its

dependent variables, otherwise it executes immediately. Subsequent re-evaluations

(from wake-up on updated variables) that continue to block retain the same state,

and unblocking events unsubscribe dependencies and execute immediately.

Channel sends and receives. Blocking sends and receives require that the

state of a channel track which event arrived first and blocked. A sender that

accesses an inactive channel will block until the corresponding receive is reached,

and vice versa. After a send-receive pair of events execute, the channel returns to

the inactive state. Figure 3.3 shows the state transition diagram for channels. Solid

edges represent states changes that are caused by events local to the same process,

and dashed edges represent state changes caused by events in other processes.

The ‘sent’ and ‘received’ states are only momentary because send-receive pairs are

4The set of dependencies is computed statically and may be conservative with respect
to run-time index values.
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Figure 3.4: chpsim channel status changes
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Figure 3.5: Communication over channels is simulated as a point-to-point synchro-
nization between two processes; neither process can complete its communication
action until its counterpart has also been reached.

guaranteed to execute at the same time (atomically); no other events can interrupt

or separate them.

Our CHP implementation also supports some non-blocking semantics. A chan-

nel probe (denoted Channel) is a boolean-valued expression that evaluates true if

the referenced channel is in the ‘sender-blocked’ state, indicating that the channel

already contains a value from the sender. Probing a channel allows choice of action
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Figure 3.6: chpsim channel status changes, with peek

to depend on the current state of the channel, and can be used to express non-

determinism. A channel ‘peek’ (denoted X ¿(x )) reads the data in a sender-blocked

channel into a variable without completing the receive transaction. Peeking allows

action to proceed based on incoming values before completing a channel transac-

tion. Peeking will block on an inactive channel as if it were a receive, but will not

allow the sender to unblock when it is reached. The channel state transition graph

with non-blocking actions is summarized in Figure 3.6.

Point-to-point synchronization on channels places some constraints on events

that access channels: a single channel cannot support more than one outstanding

send event and more than one outstanding receive (or peek) event. Violation of

these exclusion constraints will result in a run-time error. Illegal state transition

edges are not shown in Figures 3.4 and 3.6. However, it is legal for a channel to be
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shared among multiple senders and receivers (even spanning different processes),

as long as exclusive access to the shared channel is maintained.

Timing model. During event graph construction, each event is assigned its

own constant delay, which is value-independent5. If a delay is not specified in

the source, then it is given a default value based on the event type. Performance

estimations from high level concurrent program simulation can always be improved

by annotating delays from post-synthesis simulations. For the purposes of this

dissertation, assuming a default set of delays in our simulations does not detract

from the important concepts and contributions.

3.2.3 Execution Tracing

Tracing lies at the core of our analysis infrastructure. chpsim supports tracing

for every event and state change in simulation. A user can also select which time

intervals to trace if she knows a priori which intervals are interesting.

Our trace file contains two major components: an event trail, and a variable

state trail. The event trail records each event as it is executed, noting its timestamp

and global event identifier. Global event identifiers enumerate all events in the

whole program event graph. Every global event identifier can be traced back to

its parent process instance and its local event identifier within the process type6.

The variable state trail records value changes with the global index of the event

(position in the event trail) that caused the change.

Extensions. The event and variable trails represent a small set of information

needed to perform a wide variety of analyses, but the trace format and interfaces

can be extended with more information. One such addition that chpsim tracks

5Value-dependent delays and back-annotated delays are future work.
6This is possible because all processes of the same type share the same subgraph

structure, whose events are enumerated locally.
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is the last completing predecessor event that allowed each event to execute (or

unblocks event). The last completed event facilitates efficient reconstruction of a

precise critical path (Section 3.6).

Portability. The analyses we develop are bound to a set of event types which

arise from CHP. However, many CSP-like languages used in asynchronous circuit

design also map to the same set of primitive events. To leverage the same set of

trace analysis tools from our framework from a different compiler and simulation

environment, one has two options: either produce a trace file of compatible format

(contents and file structure), or provide a different trace format along with an

interface to access event trail and value trail information. The latter option takes

full advantage of our Scheme environment described in Section 3.3 and is less

invasive to development. Language-dependent features and analyses will require a

different set of interface functions.

3.3 Analysis Environment

In designing an analysis environment, we desired the following (somewhat overlap-

ping) characteristics:

• interactivity: Our infrastructure should provide an environment that gives

the user full control over execution and the ability to inspect and manipulate

data arbitrarily. This is typically achieved with a command-line interpreter.

Analysis routines and command sequences can always be scripted for reuse

and non-interactive use.

• extensibility: Users should not be restricted to the set of analyses developed

by a single author. We emphasize the ease with which new analysis routines

can be prototyped and developed with our infrastructure.
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• versatility: An infrastructure that can adapt to traces produced by other

tools is more valuable than one that is restricted to internal formats. The

interpreter’s programming environment should make it very easy to alter the

view of foreign trace files to make them accessible to analyses in our native

environment.

• accessibility: The ability to access information from the compiler, simula-

tor, and trace files without developing a custom library saves the user from

unnecessary development effort. The user should be free to export data from

the analysis environment to other tools.

• modularity: The trace analysis library should not be closely coupled to the

compiler and simulator; their development should remain as independent as

possible. Modularity helps to maximize reuse of code by hiding implemen-

tation details across common interfaces.

With these traits in mind, we elected to use Scheme7 as the host language for

trace analysis development, along with GNU Guile’s embeddable Scheme inter-

preter [23]. Scheme is a dialect of Lisp, both known for their powerful functional

programming support [1, 74]. Scheme’s philosophy is to provide a minimal set of

language primitives from which rich libraries are developed. One notable difference

from traditional Lisp is that variables are statically (or lexically) scoped, making

function behavior more discernible at compile time.

With the need to query trace files for simulation information, one could have

imagined providing a database interface to trace files. While databases do excel

at pattern-matching and data-mining of records, their support for construction

and application of higher-order procedures, which is vital to rapid development

and reuse of analyses, is much more limited than that of functional programming

7Scheme was developed in the 1970s by Guy L. Steele and Gerald Jay Sussman, and
is still widely used at this time of writing.
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languages. Development of flexible analysis routines is aided by procedural ab-

straction. If a database query interface is desired, one can be constructed from

functional languages [1].

Guile is a library for language extension [23]. It provides a bridge between C

and the Scheme environment, in which dynamically loaded plug-in libraries (also

known as modules) can interact. Extension languages are ideal for simplifying

development by reducing cooperation effort between developers. The Guile inter-

preter provides an interactive interface to trace analysis primitives and routines.

A plug-in architecture is convenient in that the baseline program can be extended

without recompilation. The convenience of rapid analysis prototyping in an in-

terpreted environment comes at a cost: the execution of analysis routines pay a

run-time cost of interpretation. Should the need for performance arise, Scheme

procedures can be re-written in C and compiled and run natively.

Understanding the examples and program listings in this document requires

some basic knowledge of Scheme or other Lisp dialect. The interested reader is

referred to the seminal Scheme text for an excellent exposition [1]. In addition to

the primitives and procedure libraries included with Guile, we supplement the core

library with generic algorithms and procedures in Appendix C.

3.3.1 Static object file queries

A large class of queries and operations only require static (stateless) information

from the program source, such as type and hierarchy information. Static infor-

mation gives additional meaning to the results of trace analyses by associating

run-time events and observations with hierarchical structure of the concurrent

program and its source. In this section, we describe of some query functions that

extract information from only the object file, prior to any simulation. A more
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complete list of basic object file queries can be found in Appendix D.

Some common query functions can be demonstrated with a few examples8.

Consider HAC Program 3.1:

Program 3.1: Source connected to sink

// source−sink.hac
defproc source(chan!(bool) X) {

chp { ∗[X!(true)] } // send value in infinite loop
}
defproc sink(chan?(bool) X) {

chp { ∗[X?] } // consume value in infinite loop
}
chan(bool) Y; // declare boolean channel Y
source A(Y); // connect Y to source
sink Z(Y); // connect Y to sink

Source defines a process that repeatedly sends a true value, and sink defines a

process that consumes boolean values. In the Scheme environment, we can query

some basic information about instances. An interactive session may look like the

following:

$ hacguile source-sink.haco

hacguile> (define yref (hac:parse-reference "Y"))

hacguile> yref

(channel . 1)

hacguile> (hac:parse-reference "A.X")

(channel . 1)

An instance reference object is represented as a type-index pair, that refers to a

globally unique instance9. Since Y is connected to A’s port X , Y and A.X refer

to the same unique channel. One can query all aliases of any instance:

8These examples are run with a small test program, hacguile, which simply loads
a compiled object file and provides an interface to internal data structures and the
intermediate representation in an embedded Scheme interpreter.

9We also provide a raw reference Scheme object that captures the hierarchical struc-
ture of the referenced instance. Raw references can be manipulated by additional inter-
face functions.
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hacguile> (hac:lookup-reference-aliases yref)

("A.X" "Y" "Z.X")

Since the representation manipulated by the simulation trace analyses work with

type-index pairs, this is useful for translating internal representations of references

into human-comprehensible source-level references. One can retrieve type infor-

mation about every instance:

hacguile> (hac:typeof-reference yref)

"chan(bool)"

hacguile> (define aref (hac:parse-reference "A"))

hacguile> (hac:typeof-reference aref)

"source<>"

hacguile> (hac:typeof-reference (hac:parse-reference "Z"))

"sink<>"

Basically, most static information about the structure of a concurrent program

(in HAC) can be queried through these primitive functions. All object-file Scheme

routines are also available in the post-simulation trace analysis environment.

3.3.2 Simulator structure and event queries

Even before a simulation is performed, one can collect information about the whole

program CHP event graph, as constructed during initialization (Section 3.2). The

environment for all queries and analyses related to chpsim is launched by running

hacchpsimguile. We can examine every event in the whole program graph con-

structed by chpsim 10. More primitive procedures related to the state of chpsim

(pre-simulation) can be found in Appendix E. The following examples follow Fig-

ure 3.7, which illustrates the whole program event graph generated by Program 3.1.

$ hacchpsimguile source-sink.haco

hacchpsimguile> (define ep0 (hac:chpsim-get-event 0))

10We use a combination of helper programs, including Graphviz’s dot, to automatically
produce graphical output of event graphs.
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pid=1: A

pid=2: Z

[0] pid=0
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A.X!(true)
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Z.X?

Figure 3.7: CHP whole program event graph for Program 3.1

hacchpsimguile> (define ep1 (hac:chpsim-get-event 1))

hacchpsimguile> ep0

(0 . #<raw-chpsim-event-node>)

hacchpsimguile> ep1

(1 . #<raw-chpsim-event-node>)

hacchpsimguile> (hac:chpsim-event-wait? (cdr ep1))

#f

; is not a wait event
hacchpsimguile> (hac:chpsim-event-assign? (cdr ep1))

#f

hacchpsimguile> (hac:chpsim-event-send? (cdr ep1))

#t

; is a send event

We can query some properties about individual events with some primitive

procedures.

hacchpsimguile> (define e1 (cdr ep1))

hacchpsimguile> (define e2 (cdr (hac:chpsim-get-event 2)))

hacchpsimguile> (hac:chpsim-event-num-predecessors e1)
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1

hacchpsimguile> (hac:chpsim-event-successors e1)

(1)

; event’s only successor is itself, event 1
hacchpsimguile> (hac:chpsim-event-successors e2)

(2)

hacchpsimguile> (hac:chpsim-event-process-id e1)

1

hacchpsimguile> (hac:chpsim-event-source e1)

"send: *[A.X!(true)]"

; event 1 sends on channel A.X.

hac:chpsim-event-source is the key procedure that traces each event back to

its precise origin in the HAC source. Many analysis routines will use this function

to show the position in the concurrent program description in CHP, as the user

had written it.

3.4 Static analysis procedures and variables

A small set of primitive operations provides a sufficient foundation for a variety

of static program analyses. Static analyses are useful for discerning the character-

istics of a program that are independent of inputs, including structural and flow

information about the whole program. In this section, we give a quick tour of some

of the core static analysis procedures built from the primitives. Listings for these

procedures can be found in Appendix E.5.

The set of all events in the whole program graph is represented as a stream

variable, all-static-events-stream. Many queries focus on a subset of events, based

on event type or some other property. We define a higher-order procedure for fil-

tering events using arbitrary predicate functions, chpsim-filter-static-events

(Program E.1).

Specialized event filters can be defined by binding predicate functions, such as

those listed in Section E.2. For example, a simple use of this filter is a search for
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all selection events.

(define (chpsim -filter -static -events -select estrm)

(chpsim -filter -static -events

hac:chpsim -event -select? estrm))

(chpsim -filter -static -events -select

all -static -events -stream)

; produces list of all selection events

A more complex event filter operation can be performed by passing composed

predicates. The following example finds selection events with exactly two successor

branches:

(chpsim -filter -static -events

(lambda (e) (and (hac:chpsim -event -select? e)

(= (hac:chpsim -event -successors e) 2)))

all -static -events -stream)

Throughout this dissertation, we frequently focus on events that involve chan-

nels on the critical path. To identify all events that can affect a certain channel,

we use the following procedure (Program 3.2):

Program 3.2: chpsim-find-events-involving-channel-id: Procedure to find
all static events that can affect the state of a channel

(define (chpsim -find -events -involving -channel -id

cid events -stream)

(chpsim -filter -static -events

(lambda (e)

(any (lambda (i) (= i cid))

(dependence -set -channels

(hac:chpsim -event -may -block -deps -internal

e))))

events -stream ))

chpsim-find-events-involving-channel-id filters out a set of events using

a predicate function that detects which events are affected by a given channel.

hac:chpsim-event-may-block-deps-internal is a primitive procedure that re-

turns a structure listing dependencies, and dependence-set-channels selects the

subset of channel dependencies by id number. The final result is a stream of event
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indices that match the criteria. The following example demonstrates its use on

input Program 3.1:

hacchpsimguile> (define ch (hac:parse-reference "Y"))

hacchpsimguile> (cdr ch)

1

hacchpsimguile> (define ch-event-strm

(chpsim-find-events-involving-channel-id

(cdr ch) all-static-events-stream))

; make a temporary associative list
hacchpsimguile> (define ch-astrm (stream-map

(lambda (e) (cons (car e) #t)) ch-event-strm))

; sort into an ordered set
hacchpsimguile> (define ch-event-set (alist->rb-tree

(stream->list ch-astrm) = <))

hacchpsimguile> (rb-tree/for-each-display-newline

ch-event-set)

(1 . #t)

(2 . #t)

; Events 1 and 2 affect channel Y

3.4.1 Sharing and caching computed results

“Use the Force, Luke.”

Obi-wan Kenobi, Star Wars

Many analyses start with the same set of queries. For instance, all analyses

that examine branch selection statistics will start by identifying all branch events.

Ideally, such common information should be shareable across similar analyses and

never computed more than once, and also computed only when needed.

Fortunately, the Scheme language gives us the ability to memoize results of

computations. The delay syntax and force procedure work together to accom-

plish delayed evaluation. In Scheme, delay-ing an expression makes a promise to

evaluate it when it is called upon with force. We illustrate their operation with

an example.
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guile> (define (hello) (display "Hello!") (newline))

guile> (define y (begin (hello) (+ 1 2 3 4 5)))

Hello!

; non-delayed expressions are evaluated immediately
guile> (define x (delay (begin (hello) (+ 1 2 3 4 5))))

; does not evaluation expression, which would call hello
guile> x

#<promise #<procedure #f ()>>

guile> (force x)

Hello!

15

; evaluates expression, and memoizes result
guile> (force x)

15

; second call returns memoized result without re-evaluating

The delayed expression is not evaluated until it is first forced. The second call

to (force x) simply returns the result that was memoized (saved) from the first

call, without re-evaluating the delayed expression. This feature allows one to create

chains of dependent analyses, with the benefit of computing intermediate results

exactly once on demand, and re-using them.

For example, we can arrange graph edges as sorted adjacency lists for efficient

lookup with the following structures.

static-event-successors-map-delayed [Variable]

For efficient lookup, the successor-adjacency lists for the whole program

event graph are available as a two-dimensional, sparse, ordered map.

(Program E.4)

static-event-predecessors-map-delayed [Variable]

The corresponding predecessor-adjacency lists of the event graph are

also available as a two-dimensional sparse, ordered map. The prede-

cessor map is the inverse of the successor map; each adjacency list
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contains all events whose outgoing successor edges are incident upon

an event node. These variables are memoized in a delay-force manner,

so their values are only ever computed once per session and cached.

(Program E.5)

static-events-with-multiple-entries-delayed [Variable]

Computed set of events with more than one predecessor. (Program E.7)

Loops. Loop head and tail pairs can be found statically by traversing event

graphs. The forward and reverse maps are evaluated at the same time.

static-loop-bound-events-delayed [Variable]

This uses depth-first-search to identify events that complete loops. The

result is a pair of ordered maps: loop heads are associated with loop

tail events, and the corresponding reverse map. (Program E.10)

The individual loop head-to-tail and tail-to-head maps can be accessed using:

(define static -loop -head -events -delayed

(delay (car (force

static -loop -bound -events -delayed ))))

(define static -loop -tail -events -delayed

(delay (cdr (force

static -loop -bound -events -delayed ))))

With loop head and tail pairs pre-computed, one can query whether an event is a

loop head or tail with a single lookup. (Most ordered lookup structures are imple-

mented as red-black trees, whose interface procedures are listed in Appendix C.3.)

Program 3.3: chpsim-event-loop-head? procedure

(define (chpsim -event -loop -head? id)

; @var{id} is a static event index

(rb-tree/lookup

(force static -loop -head -events -delayed) id #f))
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Program 3.4: chpsim-event-loop-tail? procedure

(define (chpsim -event -loop -tail? id)

(rb-tree/lookup

(force static -loop -tail -events -delayed) id #f))

Convergent branches. Analogously, branch head-tail pairs can be computed

statically:

static-branch-bound-events-delayed [Variable]

This uses a depth-first traversal to compute the set of branch head-tail

pairs, producing a forward map and a reverse map. (Program E.13)

The branch head-to-tail and tail-to-head maps are defined:

(define static -branch -head -tail -map -delayed

(delay (car (force

static -branch -bound -events -delayed ))))

(define static -branch -tail -head -map -delayed

(delay (cdr (force

static -branch -bound -events -delayed ))))

With branch head and tail pairs pre-computed, one can query whether an event is

a branch tail with a lookup procedure:

(define (chpsim -event -branch -tail? id)

(rb-tree/lookup (force

static -branch -tail -head -map -delayed) id #f))

Concurrent sections. Concurrent forks and join pairs can also be evaluated

statically.

static-fork-join-events-delayed [Variable]

This uses a depth-first traversal to identify fork-join event pairs. (Pro-

gram E.14)

The complementary maps can be accessed as delayed variables:
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; to reference the fork -to-join forward map

(define static -fork -join -map -delayed

(delay (car(force

static -fork -join -events -delayed ))))

; to reference the join -to-fork reverse map

(define static -join -fork -map -delayed

(delay (cdr (force

static -fork -join -events -delayed ))))

Loops, branches, and forks are just a few examples of statically computable

event-graph information that may be frequently sought. The delayed evaluation

computes the lookup structures only when queried, and only once even when called

from different contexts. The important idea is that the interface to primitive

procedures and relevant data structures allows one to derive static information in

the form of procedures and delayed structures.

3.4.2 Using shared results

One benefit of being memoizing computed results is that new queries procedures

can easily take advantage of delayed expression evaluation. We provide a function

for general depth-first graph traversal (DFS),

static-events-depth-first-walk-predicated, listed as Program E.8. This

procedure depends on the successor map, static-event-successors-map-delayed,

and memoizes it when invoked for the first time. The procedure argument, thunk,

expects a static event node index as an argument. The predicate argument, pred?,

determines whether or not to visit the successors of an event.

(static-events-depth-first-walk-predicated thunk pred? ) [Procedure]

Perform predicated depth-first traversal of the whole program event

graph. (Program E.8)

The un-predicated depth-first traversal is simply defined as:
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(define (static -events -depth -first -walk thunk)

(static -events -depth -first -walk -predicated

thunk (lambda (x) #t)))

These DFS procedures, however, are not properly tail recursive because of the

visit stack bookkeeping in the tail call position. As a result, event graphs with

long loops quickly run out of stack space. We also provide an iterative version of

the DFS that requires constant stack space (for event graphs with very deep loops)

in Program E.9.

To print out the sequence of visited event indices, one can call:

(static -events -depth -first -walk

(lambda (n) (display n) (newline )))

Again, due to memoization, static-event-successors-map-delayed, will only

be computed once and reused for all subsequent forced calls.

The next example filters out all events with exactly one successor and one

predecessor, which is one way of identifying basic-blocks of control flow graphs:

(chpsim -filter -static -events -indexed

(lambda (e) (and

(= (rbtree/lookup (force

static -event -predecessors -map -delayed)

(static -event -node -index e) #f) 1)

(= (hac:chpsim -event -successors

(static -event -raw -entry e)) 1)))

all -static -events -stream)

3.5 Trace analysis

A major contribution of our infrastructure is ability to analyze trace data in the

Scheme environment, which allows interaction with trace data and convenient de-

velopment of trace analyses. In this section, we present procedures for reading

trace files and construct our first analysis routines.
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3.5.1 Trace file content access

The first requirement for any trace analysis framework is to provide access to all

trace file contents. Recall that the trace file contains two components: a history of

all events, and a history of all values of variables. The chpsim trace API contains

primitive procedures for accessing individual events in the history (Appendix F).

We provide three modes of access to the event history:

• forward iterators : advance forward in time one event

• reverse iterators : retreat backward in time one event

• random access : jump to any arbitrary event in history

Although these access modes are redundant (some may be defined in terms of oth-

ers), they are implemented as different handle types to improve performance. By

exploiting events’ temporal locality, these specialized handle types can efficiently

access large trace files on disk. Appendix F.1.1 describes the basic operations that

open trace files in different modes, and the primitives that query the state of trace

handles.

The most useful method for accessing arbitrary elements in the event history

is hac:lookup-trace-entry, which uses a random-access trace handle. With the

ability to access any element in the trace data, one can traverse entire histories

through stream interfaces.

Event trace element. Each element in the event history is a tuple containing

at least the following information: absolute index (ordinal number), timestamp

of occurrence, static event index (refers to node in whole-program event graph),

critical predecessor event. The procedures for accessing these fields are:

• chpsim-trace-entry-index – global event sequence number

• chpsim-trace-entry-time – event occurrence timestamp

• chpsim-trace-entry-event – unique event index

• chpsim-trace-entry-critical – critical predecessor (sequence number)
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Their definitions are simply indexed references into Scheme lists (using car-cdr

compositions).

State trace element. Each element in the value-change history is a tuple con-

taining: the absolute index of the event that caused the value change, and the set of

values changed with their new values. A set of values is required per entry because

some events (namely, channel receives) may change multiple values atomically.

Procedures for access value-change fields are listed in Appendix F.2.2. The event

index is accessed using chpsim-state-trace-entry-index. The set of boolean

variables changed per event can be accessed with chpsim-state-trace-entry-bools,

and analogous accessors exist for integers and channels. Each variable set is a list

of (index, value) pairs, where the indices correspond to global indices assigned

when the simulation’s variable state is allocated.

3.5.2 Trace file streaming

Streams are abstractions for both finite and infinite sequences of values. In Scheme,

a stream is constructed from procedures using delayed evaluation (delay), where

each element is not computed until it is actually referenced (by force). Guile

memoizes delay-force pairs so references to previously evaluated stream elements

quickly return the cached value (Section 3.4.1). Streams are also memory-efficient

because they consume only as much memory as referenced, which is important for

handling large trace files.

Stream interfaces to chpsim’s trace files mitigate the need to work directly

on individual trace elements through a compiled library API. Appendices F.1.2

and F.2.1 list several stream-constructing procedures that operate on trace files.

The most commonly used procedures that return streams are:

• open-chpsim-trace-stream views the trace of events forward in time
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• open-chpsim-trace-reverse-stream views the event trace backwards

• open-chpsim-state-trace-stream views the history of value changes caused
by all events in chronological order

These procedures are used in the vast majority of trace analyses.

3.5.3 Trace stream manipulation

Providing a trace analysis framework gives users the ability to construct arbitrary

analyses without dealing with implementation details of the simulators and the

trace files. Most importantly, a framework liberates users from the limitations of

analyses developed solely by the authors of design tools. Manipulation of event and

state streams can be demonstrated with a few examples. Basic stream procedures

are described in Appendix C.4.

Program 3.5: Extract subset of event history on one particular event

; N is defined to a global event index

(define tr (open -chpsim -trace -stream "tracefile "))

(define result

(stream -filter

(lambda (e) (= (chpsim -trace -entry -event e) N))

tr))

; result is a stream of occurrences of only event N

Narrowing the time window of event traces is useful for analyzing phases of the

event history separately. The following examples select a subset of the event trace

history by timestamp.

Program 3.6: Truncate a prefix of an event stream before a given time

; T is a time from which to start

(define tr (open -chpsim -trace -stream "tracefile "))

(define result

(stream -start

(lambda (e) (>= (chpsim -trace -entry -time e) T))

tr))
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Program 3.7: Truncate a suffix of an event stream after a given time

; T is a time at which to stop

(define tr (open -chpsim -trace -stream "tracefile "))

(define result

(stream -stop

(lambda (e) (<= (chpsim -trace -entry -time e) T))

tr))

Program 3.8: Crop an event stream within a given time span

; T1 is a time from which to start , T2 is stop time

(define tr (open -chpsim -trace -stream "tracefile "))

(define result

(stream -crop

(lambda (e) (>= (chpsim -trace -entry -time e) T1))

(lambda (e) (<= (chpsim -trace -entry -time e) T2))

tr))

To select the corresponding subset of value changes in the same window of time,

crop the state change stream using event occurrence indices.

Program 3.9: Crop an state-change stream within a given event span

; E1 is a start event , E2 is stop event

; E1 and E2 can come from chpsim -trace -entry -index

; for an already cropped event stream

(define tr (open -chpsim -state -trace -stream "trace "))

(define result

(stream -crop

(lambda (c)

(>= (chpsim -state -trace -entry -index c) E1))

(lambda (c)

(<= (chpsim -state -trace -entry -index c) E2))

tr))

One can also filter events in the state-change stream by variable, which is

accomplished by chpsim-state-trace-filter-reference, Program F.1. The

resulting stream is a subset of the state-change stream, which can also contain

information about other variables that changed at the same events. To strip

away information about unwanted variables, the resulting stream can be restruc-

tured with chpsim-state-trace-focus-reference, Program F.2. If one is in-

terested in only the sequence of values for the referenced variable, the variable
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index field (which is now the same for all entries) can be stripped away using

chpsim-state-trace-single-reference-values, Program F.3.

These example emphasize the ease with which data streams of chpsim event

traces can be manipulated and restructured in the Scheme environment. Conve-

nient access to trace data greatly simplifies development of new analysis proce-

dures.

3.5.4 Combining static and trace analyses

With both static structure (Section 3.3) about the CHP program and run-time

event trace histories available, one can easily construct analyses that leverage static

and dynamic information. Two simple examples of such analyses are branch his-

tograms and loop histograms.

Program F.7 lists the procedure, make-select-branch-histogram, for count-

ing the frequency of successor events taken per selection statement. The procedure

is outlined as follows:

1. (chpsim-assoc-event-successors ...) constructs an adjacency list of
the program event graph using only select events (cached)

2. (chpsim-successor-lists->histogram ...) initializes a histogram

3. sorted-asoc-pred is a reverse map of predecessors constructed from the
forward adjacency list from step 1. This reverse map speeds up predecessor
lookup.

4. count-selects is the counting procedure that traverses all event stream
elements to update the histogram

5. return populated histogram, ll-histo

The procedure for counting occurrences of loops, make-loop-histogram, is

listed as Program F.8. The procedure is outlined as follows:

1. (force static-loop-head-events-delayed) caches the static set of all
loop events in the program
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2. each loop-head event initializes a slot in the histogram

3. every occurrence of a loop-head event in the event stream increments its
counter

4. return final loop-count histogram

These examples demonstrate how easily one can collect useful trace statistics

using static event queries and event streams in the functional programming envi-

ronment.

3.6 Critical Path Analysis

One analysis that deserves more attention is critical path analysis because it lies

at the core of many performance evaluations. The basic critical path procedures

we describe in this section are listed in Appendix F.2.3.

3.6.1 Algorithm and implementation

The precise critical path can be deduced by querying each event for its last arriving

predecessor event, and repeating for each critical event, progressing backwards

through the event history.

1. let e = last event index

2. while valid(e)

3. record e

4. e = lastpred(e)

Since event criticality is frequently sought, it was deemed worthwhile to track and

record critical events as they occur in the simulator event trace. The alterna-

tive would have been to reconstruct the critical path by examining all candidate

predecessor events, which is slower to compute.
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With critical events already tracked, the implementation of the critical path

algorithm is very simple, listed in Program F.4. The procedure takes a random-

access event trace handle, and with each iteration, seeks backwards in the trace

handle to the critical event of the current event. The algorithm terminates at the

first event (by detecting a self-reference). The case studies in Section 5.1 contain

some examples of critical paths output by this procedure.

3.6.2 Critical path statistics

A critical path through a long event trace can be an overwhelming amount of

information to grasp at once. We describe a few common ways of aggregating

critical path information into statistics. One can quickly examine the frequencies

of events found along the critical path.

1. for each event index i on critical path

2. ++event-counter[i]

The most frequent events are likely targets for optimizations. (The Scheme

procedure for constructing a critical event histogram from the critical path is left

as an exercise to the reader.) A simple first-order histogram does not convey

any information about the sequences of critical events. Counting occurrences of

adjacent event pairs along the critical path captures more sequencing information:

1. for each successive critical event-pair (ei, ei+1) on critical path

2. ++event-counter[ei][ei+1]

Program F.6 returns a sparse matrix where the (i, j)th values count the number

of occurrences where event i was critical to event j. Such higher-order histograms

are more effective at capturing correlations in event sequences.

In decomposed parallel programs, many critical paths will trace through chan-

nels connecting processes. Occurrences of channel communication events on the
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critical path are meaningful to slack matching and pipeline optimization. Paired

send and receive events on the critical path indicate whether the sender or receiver

is the bottleneck. Using the trace information with critical path routines, we can

construct an analysis to report which channels are critical and whether the sender

or receiver side is more critical (Appendix F.2.6). Starting with a critical path and

one channel of interest, the procedure flow is filter, fold, and count:

1. Filter-include all critical events that involve a given channel. (Program F.9,
make-critical-channel-event-pairs-list)

2. Fold: pair together atomic send-receive event pairs. (also Program F.9) Not
every communication event will necessarily be paired with its counterpart on
the critical path.

3. Among the remaining paired channel events, count the number of occurrences
of the send or receive event being more critical.
(Program F.11, count-send-receive-criticality)

Since critical send-receive pairs are the only indicators that a critical path has

crossed process boundaries11, the presence of send-receive pairs on the critical path

indicates that a design is limited by forward or backward latency through multiple

processes, whereas the absence of such pairs indicates that a single process is a

throughput bottleneck.

Another common critical path statistic simply counts how often critical events

belong to various processes. Each static event index can be traced back to its

owner process index, which is done by the make-critical-process-histogram

procedure, listed as Program F.13. The resulting histogram provides only a rough

approximation of the importance of critical processes because the event counts do

not account for the amount of time spent in each process. Nevertheless, the result

gives designers an idea of where to focus optimization efforts.

We use these procedures widely in many examples in Chapters 4 and 5 to

determine how best to apply certain program transformations.

11except for shared variables, which are less common
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3.6.3 Slack time computation

A more detailed look at critical paths can reveal the potential benefits of optimiza-

tion. Slack time is the time difference between the most critical predecessor and

the second most critical predecessor (if there is one). In other words, it measures

the potential speedup available by optimizing only a critical event before becoming

limited by the next critical path. Equivalently, it is also the delay increase that

a non-critical path can withstand (e.g., from pessimization or trading-off perfor-

mance) before becoming the new critical path and possibly degrading performance.

Since slack time is not computed and recorded on-the-fly, it must be measured

from execution traces. Slack time is only applicable to events with more than one

necessary predecessor. The recipe for computing slack time for each event is as

follows:

1. for each event with multiple necessary predecessors

2. record event time of each predecessor

3. sort predecessors by event time

4. slack time is difference between two most recent predecessors

Events that can have multiple necessary predecessors include channel sends and

receives and concurrent joins. (Branch joins only require one predecessor to pro-

ceed.) Wait statements and blocking deterministic selections (those that lack an

else-clause) can have multiple predecessors, depending on the guard expressions.

For example, [a∧b] could be waiting for two separate events that set a and b true.

Identifying necessary predecessors involving guard variables requires examining the

values of the variables and their changes, from the variable history component of

the trace file.
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3.6.4 Critical path sensitivity

Slack time for each event on the critical path can indicate the amount of perfor-

mance one might expect to gain by optimizing each event. However, slack time

is only an approximation of the sensitivity of overall performance to each event’s

delay in the whole program. Performance sensitivity can help prioritize avenues of

design space exploration, which is one of the goals of our analysis framework.

There is a significant amount of previous work on approaches to quantifying

critical path sensitivity from parallel program analysis (software). In software,

one asks how each segment of code affects the performance of a parallel program,

whereas in hardware, one asks how each subcircuit impacts the system perfor-

mance. The approaches described here mostly apply to measuring performance

sensitivity on instrumented parallel programs. Since we are simulating execution,

we have the liberty to alter event delays to mimic these methods.

S-Check (for sensitivity check) is an analysis tool that empirically determines

where parallel program bottlenecks are by automatically inserting artificial delays

at various program points and measuring its impact on performance [39, 61, 62].

Inserting artificial delays in the absence of nondeterminism guarantees identical

intermediate results. This approach can be useful when one can afford (time and

storage) to re-run the CHP simulation for each program point with altered delay.

Logical Zeroing (LZ) is a method for estimating the potential improvement in

accelerating a part of a parallel program [49]. The improvement calculated by

LZ is only an approximation because assigning a zero delay to part of a parallel

program may cause events both on and off of the critical path to be reordered.

True Zeroing (TZ) is an experimental technique that measures the actual potential

speedup for a part of the program by replacing executed code with precomputed

results (for correctness) [28]. True-zeroing was used to evaluate various parallel
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program metrics used in estimating performance sensitivity. This approach is easy

to support in our simulator by changing the delay of a particular event to zero.

3.6.5 Near-critical paths

Alexander, et al. present efficient algorithms for computing near-critical paths,

given a program activity graph (from timestamp-annotated traces) with known

slack times [2, 3]. An alternative to the above zeroing-based sensitivity analyses,

near-critical paths help estimating the expected speedup (or slowdown) of changing

the delay of individual events in the static event graph, which can help prioritize

optimizations to explore. An activity graph with very low slack times exhibits

multiple paths with similar delays. Since all events have fixed delays in our simu-

lation model, we can easily reconstruct a time-annotated program activity graph

for near-critical path analysis.

We can construct all near-critical paths from a simulation trace by extending

the original critical path algorithm to use a worklist with a slack time budget.

The following algorithm answers the question: what are all event paths that occur

within a given slack time from the critical path?

1. while worklist has (event,budget) pairs (e, b)

2. let c be the critical predecessor of e

3. for all necessary predecessor events p at time t(p)

4. let s = t(c)− t(p) be the slack time

5. if slack time s < b

6. add (p, b− s) to worklist (remaining slack)

7. end for

8. end while

The input to the algorithm is a terminal event ef , and an allotted slack budget

b0, which form the initial pair in the worklist. The algorithm always includes the
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critical path; an initial slack budget of 0 is equivalent to finding only the critical

path(s), because all events on the critical path have zero slack. This algorithm

finds all event paths that lead to the critical path within the given slack budget. If

the resulting directed-acyclic graph of events are annotated with their slack budget

values b(e), then the maximum additional delay that event e could afford before

becoming the critical path is b0 − b(e) because any increase in delay reduces the

available slack budget. It is possible for events to be visited multiple times from

different re-convergent near-critical paths. To resolve this, the event should be

re-evaluated using the minimum of all remaining slack budgets (over all incident

paths) to capture the worst-case impact of increasing delay.

The set of near-critical paths presents even more information which may over-

whelm the user, so one will often collect aggregate statistics about near-critical

paths before scrutinizing the details. When prioritizing optimizations and trans-

formations on the basis of potential improvement, it can be important to consider

the available slack times in addition to frequency of occurrence along the critical

path.

3.7 Putting it all together

This chapter has presented the infrastructure for analyzing programs and devel-

oping custom analyses. CHP is the high-level source language used to describe

concurrent programs. We have provided a compiler and CHP simulator that can

produce event traces from run-time execution. Rather than provide analysis rou-

tines and trace access methods through a compiled programming interface, we

make all static and run-time information accessible through primitive procedures

in an interactive Scheme environment. The Scheme environment makes it very

easy to manipulate data and develop new analysis procedures with little hassle.
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The examples in this chapter demonstrate how effortlessly procedures can be writ-

ten and deployed. An added benefit of an interactive analysis environment is that

users can select the analyses of interest depending on the data observed.

In the next chapters, we describe how run-time analyses developed in our frame-

work can aid in selecting and exploring optimizing program transformations.
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CHAPTER 4

APPLICATIONS OF ANALYSES TO TRANSFORMATIONS

A program should be light and agile, its subroutines connected like a
string of pearls. The spirit and intent of the program should be retained
throughout. There should be neither too little or too much, neither
needless loops nor useless variables, neither lack of structure nor over-
whelming rigidity.

A program should follow the ‘Law of Least Astonishment’. What is this
law? It is simply that the program should always respond to the user in
the way that astonishes him least.

A program, no matter how complex, should act as a single unit. The
program should be directed by the logic within rather than by outward
appearances.

If the program fails in these requirements, it will be in a state of disorder
and confusion. The only way to correct this is to rewrite the program.

The Tao of Programming

The ultimate goal of our asynchronous CAD tools is to be able to automatically

and efficiently explore high-level transformations of parallel programs, which lead

to optimized circuit synthesis. A crucial step towards that goal is to provide a

framework for analyzing the performance of asynchronous circuits at a high level

of abstraction. In this chapter, we discuss various program transformations used to

optimize parallel programs. The sample of transformations is far from exhaustive,

however, the point is to show how our trace analysis framework can aid in deciding

how best to apply an arsenal of program transformations.

Before a program can be rewritten, static program analyses are required to de-

termine how one can locally rewrite components without altering the outcome of

the program. Semantic-preserving transformations are the heart of optimizations

of software and hardware. Local (non-visible) results are permitted to change as

long as the visible outcome is consistent with the original program. Techniques for

static analyses and program rewriting are outside the scope of this dissertation,
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however, we provide examples where the applicability of optimizing transforma-

tions is not deducible from static analysis alone.

Asynchronous VLSI liberates circuit designers from minding timing constraints

on signals; a purely event-driven hardware abstraction (and programming abstrac-

tion) lets designers and synthesizers focus on preserving the sequences of values

observed at process interfaces for correctness, independent of timing and perfor-

mance. The synchronous design methodology does not afford this freedom to

decouple timing from functional correctness, and is thus harder to design and de-

compose modularly, and difficult to verify formally. We discuss this point in more

detail in Section 4.2.

4.1 Parallel Decomposition

The whole is more than the sum of its parts.

Aristotle, Metaphysics

The sum of the parts is greater than the whole.

overheard in a ceramic repair shop

The most common transformation used in concurrent hardware is parallel de-

composition, where longer sequential loops are broken down into semantically-

equivalent sets of shorter, and explicitly concurrent loops. Monolithically sequen-

tial functional specifications of large systems can be progressively decomposed into

smaller and simpler concurrent processes. One difference between parallel software

and parallel hardware is that hardware exists as repetitive processes that respond

to their inputs at all times ; the existence of circuits is not lexically scoped, nor is

their operation determined by call-sites. (For readers more familiar with parallel

software, asynchronous hardware design is analogous to message-passing multi-

threading, or concurrent processes communicating over channels or sockets.)
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Tradeoffs. Since decomposition results in more processes and communication

channels, finely decomposed processes will be naturally more pipelined. Smaller

pipelined processes are easier to implement and synthesize into circuits. The added

parallelism from decomposition can result in increased throughput, but comes

at the cost of area overhead from circuits used to communicate over channels.

Increased parallelism can contribute to an increase in activity density and power

consumption. Less pipelined (coarser-grained) designs may be more suitable under

area-limiting or power-limiting constraints. In designs where the activity is non-

trivially input-dependent, trace analysis can help identify which subcircuits are

worth decomposing.

Techniques. There many approaches to process decomposition using static

program analysis. Projection is a method that divides program variables and

actions on variables (such as channel communications) into non-conflicting sets of

producer-consumer communications [41]. Many techniques from conventional soft-

ware compilers are also highly applicable to decomposition. Static-single assign-

ment (SSA) form is useful for identifying the lifetime of each variable’s definition,

and explicitly merging multiple definitions (using φ nodes). By separating each

definition into its own def-use chains, it is easier to separate different definitions of

the same variable into different communicating processes. ‘Static tokens’ is a more

restrictive variation of SSA that has been used to decompose sequential descrip-

tions into fine-grain asynchronous primitive processes, and has been used to map

CHP programs onto asynchronous FPGAs [68]. Basic dataflow analysis is useful

in determining the lifetime of every variable definition, which determines where

interprocess channels are needed in decomposition [77, 78].

Composition. When taken to the extreme, decomposition can produce fine-

grain, overly decomposed processes that incur high communication and area over-
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heads. It is natural to ask: when and where is it beneficial to coalesce several

communicating processes into fewer, unpipelined processes? Explicit channels and

process communication interfaces make it very easy to re-compose parallel process

back into sequential processes. Since the number of combinations of compositions

is potentially exponential with the number of components, finding an efficient com-

position can be an intractable without examining the utilization and criticality of

each component. For example, combinations of compositions could be greatly

pruned by eliminating components that appear on the critical path. The informa-

tion one can gather from trace analysis can be used to guide both decomposition

and recomposition of parallel processes.

O!

f (x, g(y, z))

C?B?A?

Figure 4.1: Unpipelined expression
computation process

W

C?B?

A?
g(y, z)

f (x, w)

O!

Figure 4.2: Pipelined expression
computation process

Functions and expressions. Another context where decomposition can

be applied is in functions and expressions. Consider the following feed-forward

computation (Figure 4.1):

*[A?(x ),B?(y),C ?(z );O !(f (x , g(y , z )))]

Since CHP’s expressions are not inherently pipelined, f (x , g(y , z )) (in its literal

interpretation) could be synthesized as a monolithic, unpipelined function block.

If the bottleneck lies in the evaluation of f (x , g(y , z )), and the process’s throughput
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(rate of repetition) is performance-critical, then pipelining the O !(...) action would

improve throughput by decoupling the computation from the communication on

O . The process can be rewritten to explicit use an intermediate value w:

*[A?(x ),B?(y),C ?(z );w := g(y , z );O !(f (x ,w))]

The assignment of w can be decomposed into a send-receive pair on channel W

between concurrent processes (Figure 4.2):

*[B?(y),C ?(z );W !(g(y , z ))]
‖ *[A?(x ),W ?(w);O !(f (x ,w))]

Each new process evaluates simpler expressions, and is expected to achieve greater

throughput than the original process. By decoupling the producer and consumer

of w, the producer process can concurrently begin the following iteration while the

consumer is computing. Pipelining, however, incurs forward latency in communi-

cation over channel W . It only makes sense to pipeline the original computation if

its throughput is limiting the overall performance, not when the latency of result is

critical. Critical path analysis can help categorize processes as throughput-critical

or latency-critical, which can help human (or machine) rewriting of the high-level

parallel program description.

One of several ways to determine the propriety of pipelining through decom-

position is to ask how the channels of this process (A, B, C,O,W ) appear on the

critical path, using channel criticality procedures from Section 3.6.2. The result of

make-critical-event-pairs-list immediately indicates whether the problem is

isolated to a single process or crosses multiple processes: if the result lacks send-

receive pairs on the critical path, then the performance is limited to the throughput

of a single process because the critical path never crosses process boundaries. In

the cases where channel event pairs do appear: if a channel is repeatedly sender-

critical, then performance is limited by forward latency, a receiver-critical channel

is limited by backward latency.
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Process decomposition is an essential transformation from which sequential

programs first gain large speedups due to parallelization. Static program analyses

can help partition large processes into communicating subprocesses. When applied

to the extreme, decomposition results in finely pipelined, simple processes oper-

ating concurrently. A designer who concerns herself with the tradeoffs between

area, energy, and performance can benefit from identifying components with fa-

vorable tradeoffs using our trace analysis framework. A profile-guided exploration

of decompositions (or compositions) can drastically reduce the space that would

otherwise be intractable.

4.2 Pipelining and Slack Matching

Process decomposition naturally adds pipelining to a concurrent program because

the producer and consumer of communicated channel values can operate decou-

pled from each other. Pipelining often leads to increased performance because

the resulting decoupled processes have shorter loops, and thus higher achievable

throughput. A parallel program can also be pipelined by adding buffers (FIFOs) on

the communication channels between processes, which increase the slack of chan-

nels [75]. Static slack is defined as the maximum difference between the number

of communications (tokens) observed on the ends of a channel, in other words, the

token capacity of a channel. To better understand why slack matching is only rel-

evant to asynchronous VLSI, we summarize the differences between synchronous

pipelining and asynchronous pipelining.

Synchronous vs. asynchronous pipelining. Changing pipelining in asyn-

chronous circuits without affecting its functional correctness is possible because

correctness is only defined by the sequence of values observed, not their timing;

there is no notion of expecting signals at clock edges. Pipelining a synchronous
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design results in additional clock cycles latency, which alters its observable inter-

face. The problem of pipelining a synchronous design, known as retiming , involves

relocating clocked register boundaries, possibly adding or removing registers on

paths, and can be very invasive to change. (A specification of the logic between

clocked latches is called Register Transfer Logic, or RTL.) Synchronous retiming

becomes non-trivial as soon as there are cycles of clocked paths created by internal

feedback; changing the amount of pipelining on cycles causes a visible change in

functionality! A cyclic clocked path with N registers computes a different result

than the same cyclic path and logic re-timed to use M registers! A synchronous

cyclic path with N registers invariably holds N values in the loop.

Asynchronous pipelining, however, can deepen pipelines without adding place-

holders for values, in other words, the physical pipelining (number of FIFO buffers)

is independent of the logical pipelining (number of value places). (One can, how-

ever, add ‘initial-token’ buffers to increase the number of value places to asyn-

chronous pipelines.) This property allows channels (on cyclic and acyclic paths

alike) to be pipelined with arbitrary depth without changing the functionality of the

whole program for a wide class of designs, slack elastic designs [42]. Arbitration-

free asynchronous designs without data races fall into the category of slack elastic

designs. Some designs that use arbitration can be slack elastic. Asynchronous

designs can also exhibit local slack elasticity in parts of the entire program.

Pipeline dynamics is the general study of asynchronous pipeline performance

with respect its structure: the number of buffers, the number of tokens in-flight,

and the latencies through the buffers. Asynchronous pipeline performance is well

understood for pipelines under steady-state operation [38, 75]. To summarize, the

analytic solutions for asynchronous pipeline performance are computable as min

and max expressions of the canonical sources of performance limitations:

• forward latency limiting (token-limited)
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• backward latency limited (bubble-limited)

• cycle limiting (self-limiting or handshake-limited)

Other authors have proposed linear programming solutions to more generalized

pipeline topologies [57]. Since adding buffers increases the energy consumed per

token, one can also optimize a design for energy-efficiency by removing buffers from

the throughput-optimal solution [67]. The limitation of all of these slack matching

methods is that they are restricted to steady-state operation.

In practice, pipelined designs do not always exhibit simple steady-state behav-

ior. For example, transient pipeline behavior can arise from data dependence, or

pipeline hysteresis (state-holding), or even loops with varying number of tokens

in-flight. It will not always be possible to find an analytic or numerical solution for

every situation. Complicated parallel program behavior can be better understood

through simulation and detailed execution analysis, which is the role of our trace

analysis framework.

4.2.1 Intuition from criticality

Trace analysis can also help designers less familiar with asynchronous circuits un-

derstand pipeline dynamics using the principle of criticality. Consider a typical

CHP program excerpt with channel communication actions:

*[...;Xi !(x ); ...]
‖ *[...;Xo?(z ); ...]

where Xi and Xo are the respective input and output of a FIFO channel X. (The

partial event graph resembles Figure 3.5, except that channel C is replaced with

a FIFO.) The send event on channel Xi must wait for two preconditions before it

executes: the immediate predecessor event has completed, and that the receiving

end (Xi?) has been reached, and is ready to receive. Likewise the receive event
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on Xo waits for its predecessors to complete, and for the sender side to have data

ready to send (Xo!). If critical path statistics (Section 3.6) reveal that on the

sender side, the predecessor is more critical, then performance is limited by either

the forward latency through X or the repetition rate of the sender process. In

this case, the receiver process will also find that the sender is more critical than

the predecessor of Xo?(). If forward latency through a channel is critical, one

can reduce forward latency by reducing the number of buffers of the FIFO on

the channel. On the other hand, if the sender process finds that the receiver is

more critical (the send event is usually waiting for the receiver to be ready), then

performance can be improved by adding more buffering on channel X, or improving

the receiving process’s throughput. Additional static slack on channel X would

further decouple the sender and receiver, allowing the sender to proceed further

when the receiver is congested. If the throughput is limited by the repetition rate

of either the sender or receiver process, then changing the amount of buffering on

X will not yield any speedup.

4.2.2 Token ring examples

No discourse on slack matching would be complete without referring to the token

ring, an asynchronous FIFO connected in a closed loop. We use token rings to

demonstrate critical path analyses on trace files. Suppose we have a buffer whose

forward latency is 1 time unit, and backward latency is 7 units, and thus has a

cycle time of 8 units (denoted as a (1 + 7)-buffer, for brevity). We connect several

such buffers in a ring with one element that contains an initial token.

A whole program event graph of a slack-6 ring is shown in Figure 4.3. (The

event graph legend is summarized in Figure 3.2.) In this figure, each buffer is

drawn as a separate process (shown as rectangles), where each process contains a
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[0] pid=0

[3] pid=2

b0.x := true

[4] pid=3

[after=7]

C[1]?(b[1].x)

[6] pid=4

[after=7]

C[2]?(b[2].x)

[8] pid=5

[after=7]

C[3]?(b[3].x)

[10] pid=6

[after=7]

C[4]?(b[4].x)

[12] pid=7

[after=7]

C[5]?(b[5].x)

[1] pid=2

[after=1]

C[1]!(b0.x)

[5] pid=3

[after=1]

C[2]!(b[1].x)

[7] pid=4

[after=1]

C[3]!(b[2].x)

[9] pid=5

[after=1]

C[4]!(b[3].x)

[11] pid=6

[after=1]

C[5]!(b[4].x)

[13] pid=7

[after=1]

C[0]!(b[5].x)

[2] pid=2

[after=7]

C[0]?(b0.x)

Figure 4.3: Whole program event graph of a token ring

simple event subgraph of a send and receive event in alternation. The initial token

buffer (left) sends a token before receiving; there is exactly one token in the ring

at all times. The dotted edges between events in different processes represent the

channels over which values are sent. The send and receive events at the endpoints

of a channel execute simultaneously and atomically, as described in Section 3.2.2,

Figure 3.5.

After simulating and producing a trace, we examine the critical paths through

token ring. Table 4.1 is an excerpt of the critical path through the simulation

trace of this token ring. The ‘index’ column is the event number in the trace

file, the ‘time’ is the time of event occurrence, ‘event’ is the index of the static

event from the whole program event graph, and ‘crit’ is the index of the critical

predecessor event, the last predecessor to unblock this event. The static event

numbers correspond to those in Figure 5.2. Critical send-receive pairs are listed

as paired rows. For every send-receive pair on the critical path, the event with

the lower event sequence index (column 1) is the more critical of the pair, i.e.

the program point was reached later than its counterpart with the higher index.

For example, traced event index 182 (send event 4, in process 3) was more critical
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Table 4.1: Critical path through a to-
ken ring, whose performance is lim-
ited by the buffers’ cycle time. Send-
receive event pairs have been grouped
together.

index time event crit.

......
183 137.0 1 182
182 137.0 4 173
173 130.0 5 172
172 130.0 6 163
163 123.0 7 162
162 123.0 8 153
153 116.0 9 152
152 116.0 10 143
143 109.0 11 142
142 109.0 12 133
133 102.0 13 132
132 102.0 2 123
123 95.0 1 122
122 95.0 4 113
113 88.0 5 112
112 88.0 6 103
103 81.0 7 102
102 81.0 8 93
93 74.0 9 92
92 74.0 10 83

......

Table 4.2: Critical path through a to-
ken ring, whose performance is limited
by the buffers’ forward latency. Send-
receive event pairs have been grouped
together.

index time event crit.

......
85 94.0 2 84
84 94.0 13 83
83 92.0 12 82
82 92.0 11 81
81 90.0 10 80
80 90.0 9 79
79 88.0 8 78
78 88.0 7 77
77 86.0 6 76
76 86.0 5 75
75 84.0 4 74
74 84.0 1 73
73 82.0 2 72
72 82.0 13 71
71 80.0 12 70
70 80.0 11 69
69 78.0 10 68
68 78.0 9 67
67 76.0 8 66
66 76.0 7 65

......

than its corresponding receive (event 1, in process 2). As we follow the critical path

backwards in time, we observe that each send-receive pair points to the receiver

side as the critical event. The receive action in each buffer is the limiting factor

because its delay of 7 units is longer than the total forward latency around the

ring, 6 units; the cycle time of each buffer process limits the throughput of the

token ring. The critical path analysis corroborates our expectations from pipeline

dynamics.
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The above analysis is captured by the channel-send-receive-criticality

procedure (Program F.12), whose result is pair of counters for the number of

occurrences of sender-criticality and receiver-criticality1.

; ’crit’ is already the critical path stream
; ”ring.M[0..N]” are the channels in the token ring
hacchpsimguile> (channel-send-receive-criticality

crit "ring.M[0]")

(1 . 3)

hacchpsimguile> (channel-send-receive-criticality

crit "ring.M[3]")

(0 . 3)

The number of receiver-critical occurrences (3) always exceeds the number of

sender-critical occurrences. The analysis finds that the ring of 6 (1 + 7)-buffers is

limited by backward latency, which indicates to the designer that more slack or

improved backward latency would improve performance.

Now consider the same token ring of buffers with different forward and back-

ward latencies, (2 + 6)-buffers, with the same cycle time. (The event graph is

unchanged from Figure 4.3.) An excerpt of the new critical path is listed in Ta-

ble 4.2. This time we observe that for every send-receive pair on the critical path,

the sender was always the more critical event (listed with lower index in each

paired row). This concurs with pipeline dynamics principles: the cycle time is

limited by the total forward latency around the token ring, which is now 12 units

(6× 2).

; ’crit’ is already the critical path stream
; ”ring.M[0..N]” are the channels in the token ring
hacchpsimguile> (channel-send-receive-criticality

crit "ring.M[0]")

(9 . 0)

hacchpsimguile> (channel-send-receive-criticality

crit "ring.M[3]")

(8 . 0)

1Counts below 2 are usually attributed to transient behavior from the beginning of
simulation or the tail end of the critical path.
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Figure 4.5: An unbalanced computa-
tion tree is suitable when the last input
arrives much later than the rest.

This time, the same analysis finds that the sender is always more critical (8 and 9

times), which indicates to the designer that performance can be gained by reducing

slack, or improving the forward latency of the buffers.

The example in this section demonstrates how basic pipeline dynamics are

corroborated by critical path analysis. The critical path analysis procedures in

our trace analysis framework can serve as a basis for exploring slack matching

in arbitrarily complicated asynchronous circuits and parallel programs. Slack in

an asynchronous design can be optimized without requiring a specialized frame-

work for analyzing pipeline dynamics. Section 5.1 demonstrates how critical path

analysis leads to the same conclusion as static pipeline analysis for a pipelined

computation loop operating in a steady state.

4.3 Subexpression Scheduling

In Section 4.1, we described how expressions can be explicitly pipelined in CHP by

communicating intermediate results on channels. Critical path statistics can in-
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dicate whether decomposition (or composition) may improve performance. Other

opportunities for optimizations can come from functions and expressions that can

be evaluated in different orders, such as associative operations, often found in

reduction computations. Common associative operations include addition, multi-

plication, bitwise- and logical- AND, inclusive-OR, exclusive-OR, minimum, max-

imum, least common multiple, greatest common denominator. (These all happen

to be commutative, but commutativity is not required.)

Given an associative expression: OP(a, b, c, d , ...) with varying arrival times

of its inputs, what is the optimal tree-decomposition that minimizes the delay of

the final result? To answer this, one considers the relative arrival times of the

inputs with respect to when each output is produced. Intuitively, the last arriving

input should be scheduled closest to the final result of the evaluation to allow

evaluation of independent subexpressions as early as possible. Using our trace

query framework, one can construct the following analysis:

1. for expressions o of the form OP(...)

2. note time t when o is completely evaluated

3. for all operand variables vi used in expression o

4. find the event a that necessarily produces vi (receive or assignment)

5. note the time of the event, t(a)

6. identify the “last arrived” variable as critical

Suppose we compute the result using only binary (2-input) function units. If

N inputs arrive simultaneously, a balanced reduction tree results in the minimal

delay in evaluating the result (Figure 4.4). However, in the extreme case where

the last of N inputs arrives much later than the others, the optimal scheduling

will evaluate as much as possible before the last input arrives with unbalanced

structures (Figure 4.5). The slack times relative to the last arriving input and

the latency per stage of computation will determine the optimal shape of the tree-

decomposition. The problem is also generalizable to heterogeneous expressions
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involving different operators each with different latencies, where the scheduling

freedom is still limited to only associative operators.

To assess how an expression tree should be restructured to minimize average

latency, one should focus on occurrences of the input channels (at the leaves of

the expressions) in the critical path. In a forward-latency limited scenario, each

occurrence of the final output channel on the critical path will also be preceded

by one of the input channels on the critical path. In any given configuration,

the input channel that appears the most often on the critical path is a likely

candidate for ‘pushing’ closer to the root of the computation. Simple queries

on the frequencies of occurrences of a set of channels on the critical path (using

make-critical-channel-event-pairs-list, Program F.9, for example) will find

good candidates for restructuring.

Subexpression scheduling is just one application of general slack time analysis

(from Section 3.6.3), where a group of events are prerequisites to another event,

whose dependency graph is tree-like in form. In this particular instance, the de-

pendencies represent intermediate results of a large expression. Run-time critical

path and slack time statistics can improve circuit synthesis by scheduling the fre-

quently critical paths more aggressively. Subexpression scheduling is applicable

to mapping concurrent computations onto programmable devices such as FPGAs.

Particularly for asynchronous FPGAs, the place-and-route phase has potential to

reduce significant latency on forward paths, given the knowledge of critical paths

discovered from simulation.

Instruction scheduling in compilers. Software compilers also take advan-

tage of knowing the different latencies of machine instructions. Back-end assembly

code emitters use some model of the machine pipeline, and attempt to schedule

instructions in an order that minimizes pipeline stalls (wasted idle cycles). Code
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generators have the added constraint that machine code can only be read linearly

in an instruction stream, though modern superscalar architectures can issue mul-

tiple instructions per cycle. The compiler’s back-end optimization problem can be

summarized: given availability times of inputs to a block of computation, find a

static instruction scheduling that minimizes the latency of the final result(s).

In hardware design, the analogous challenge is to find a static restructuring of a

computation that minimizes the typical latency to the final output. Unlike machine

code generation, hardware design lacks the sequentializing constraint; independent

operations may happen concurrently in an event-driven manner. We have shown

how trace analysis can aid the optimization of a recurring pattern in circuit design,

where multiple inputs are reduced to a single result through computation. In

particular, the analysis procedures from Section 3.6.2 and Appendix F.2.6 are

suitable for finding the most critical input to a computation, which is a prime

candidate for restructuring. Besides expressions, other examples of convergent

dependencies include synchronizations, and route merges. We will see the theme

of criticality-driven restructuring again in Section 4.5.

4.4 Flow Control and Speculation

In this section, we look at opportunities to optimize around flow control con-

structs in parallel programs. Hardware and software optimization around control

flow share many common ideas. Many software compilers feature optimizations

that revolve around control flow. Branches have played a crucial role to machine

code performance for many reasons: latency is incurred by having to wait for com-

parison outcomes before selecting an execution path, so branch delay slots were

introduced in some ISAs to hide latency by scheduling branches before instructions

that logically preceded the branch. Hardware branch prediction hides branch laten-
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cies by speculatively executing down likely paths, but pays a performance penalty

to undo the effects of misprediction. The greater the misprediction penalty, the

more important it is to have high accuracy. Compilers have the added challenge of

scheduling likely sequences of basic blocks together to improve instruction memory

locality, and minimize disruption to the flow of instructions. Instruction predica-

tion alleviated overhead incurred on short branches by conditionally masking the

effects of select instructions in longer basic blocks. Predication is usually accom-

plished through if-conversion on an intermediate representation such as SSA.

It is not always possible to infer optimal transformation policies from static

program analysis alone. Wrongly applied transformations can degrade a program’s

performance! Program execution can be profiled to collect statistics on branches,

which is featured in the gprof instrumenting profiler [22]. A compiler with profile

statistics is much more capable of making more informed optimizations around flow

control constructs. Many of these principles analogously adapt to asynchronous

hardware design and optimization.

With access to entire simulation traces, our trace analysis framework provides

an interface to construct arbitrary queries on the trace file offline. In Section 3.5.4,

we outlined a procedure to collect branch statistics over an entire event trace,

Procedure F.7. To focus on only branch events that occur on the critical path, one

simply passes the critical path event stream (result of Program F.4) as the input.

This is useful when one intends to transform only the most performance-critical

branches in the parallel program.

Speculation. One novel application of branch statistics in compiler optimiza-

tions is speculation or speculative code motion, where some actions are taken before

it is known whether or not their results are actually relevant or applicable. This can

result in a speedup by computing results that are critically needed before waiting
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for a conditional result to start the computation. Speculation incurs performance

overhead when the result of speculative execution is thrown away, because the

computation resources could have been spent elsewhere, so it is generally applied

where the benefits outweigh the costs with high confidence. As mentioned earlier,

branch prediction in microprocessors is one example of speculation in hardware.

Confidence-based predictors allow a branch to be speculatively taken when it is

highly probable that it will not be mispredicted.

Consider the following construct in CHP:

*[P?(p),Q?(i);
[p → R!(i + 1)[]else → skip];
. . .

]

‖
*[R?(c); . . .]

A value is conditionally sent over channel R, and the receiving process waits for a

value on R before continuing to execute. The first loop can be re-written to execute

the then-clause speculatively and forward the predicate p to the consumer in the

second loop to be able to correct misspeculation (since every producer must be

matched to a consumer). The resulting equivalent program resembles the following:

*[{P?(p);B !(p)}, // copy − forward the predicate
{Q?(i);R!(i + 1)}; // B and R decoupled
. . .

]

‖
*[R?(c);

. . . // start some work speculatively
B?(b);
[b → skip
[]else → . . . // discard iteration
]

]

With respect to energy, such “code motion” would be justifiable if the predicate p is

usually true, so that few additional communications on R would be wasted, and the
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early evaluation in the receiving process results in speedup. There is performance

to be gained in the new version if the critical path frequently contains the path

from Q to R; speculatively sending R allows the receiver to proceed earlier, even

if its result is not always needed. To evaluate this tradeoff, one must profile the

frequencies of the branches, and the slack times of speculative results on the branch:

1. for all conditional events (immediately dominated by a branch and post-
dominated by the corresponding branch merge)

2. filter: actions that produce a result (e.g. send)

3. count number of occurrences on the critical path

4. optional: evaluate slack time w.r.t. sibling predecessors

In other words, conditional producers of values that are frequently found on the

critical path are likely candidates to benefit from speculative execution. Large

slack times and long latency operations on the conditional paths indicate oppor-

tunities to speedup from speculation. The results of the above analysis can serve

as a starting point in finding opportunities to optimize parallel programs using

speculation.

Another speculative transformation executes multiple branches concurrently

and postpones result selection. In the following program, a function of two vari-

ables is selected based on a predicate b:

*[B?(b);
[b → z := f (x , y)
[]else → z := g(x , y)
];
Z !(z )

]

If receiving on B is critical and f and/or g are slow operations, then performance

is limited by sequencing the functions after receiving B . Here is an opportunity to

pre-compute the results of f and/or g earlier, because neither expression depends
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directly on b. After hoisting both f () and g() above the selection, the equivalent

program becomes:

*[B?(b), s := f (x , y), t := g(x , y); // concurrent , not blocked by B
[b → z := s []else → z := t ]; // one result is wasted
Z !(z )

]

By evaluating both branches, the evaluations of f () and g() are no longer

blocked by the predicate b. Again, speculation incurs an energy cost, where more

results are computed than are actually used. The overall benefit of this trans-

formation depends on the context of this process instance, and its impact on the

whole system. If B?(b) were not on the critical path, then there would be no

benefit to speculatively computing results, only wasted energy.

The above examples could have also been postulated negatively: when does it

pay to de-speculate work, postponing actions until it is certain that their results are

needed? Such an analysis begins by asking how often values are defined without

being used (e.g. def-use chains from dataflow).

1. find all variables v that may be conditionally unused

2. locate static events that produce them, e = producer(v)

3. identify paths from these events in which variables are dead

4. count occurrences in the event trace where paths taken leave variables dead

5. sort by: frequency-of-occurrence × energy-per-occurrence

This identifies opportunities to reduce energy by postponing computations until

their results are guaranteed to be used. De-speculating transformations are worth

exploring in energy-critical applications where performance does not matter. The

following CHP program illustrates a scenario where de-speculation may be benefi-

cial.
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*[. . . ; a := h(x , y),P?(p);
[p → z := g(a, x )
[]else → z := g(y , x )
];
. . . // use z, but not a

]

Note that the path from the definition of a through the else clause results in a

dead definition of a. If trace analysis found that a was frequently unused, then a

compiler might be motivated to delay the computation of a onto paths where it is

used.

*[. . . ; P?(p);
[p → a := h(x , y); z := g(a, x )
[]else → z := g(y , x )
];
. . .

]

By computing a only on paths where it is needed, the transformed program now

consumes less energy per iteration than the original. Whether or not the de-

speculated program runs slower than the original depends entirely on criticality,

as determined by trace analysis.

Considering scenarios where one may be interested in selectively moving code

into or out of branches, or even introduce branches, one realizes that exploring the

entire span of semantic-preserving speculation (or de-speculation) transformations

is intractable. Static program analyses may identify abundant opportunities to

apply speculation, but without profiled analysis, it can be very difficult to deter-

mine which sites are worth rewriting. Profiling a simulated execution trace for

branching statistics and path criticality is a highly effective way of narrowing the

scope of local transformations to consider. Our trace analysis framework gives

users the ability to inspect execution details on events involving branches, which

ultimately helps users (or compilers) make informed decisions to apply speculating
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transformations.

4.5 Selection Restructuring

One of the general observations of circuit design is that larger circuits that compute

more complex functions tend to be slower. The physical intuition behind this

observation is that:

• circuits that compute more tend to have more transistors in series, thus
reducing drive strength

• more transistors increases capacitive load (especially when sized for drive
strength)

• longer wires spanning larger areas increase both capacitance and resistance.

This results in an interesting space of design tradeoffs for circuit designers in

both the synchronous and asynchronous domains. For instance, at the transistor

netlist level, designers are constantly faced with the decisions to split or combine

logic gates. Should a large N -input function be divided into multiple levels? The

mathematics of logical effort formulate such questions as delay minimization prob-

lems [65]. At the gate level, circuit designers are primarily interested in meeting

target cycle times — the search for a solution is driven by “whatever it takes to

meet the target.”

The same size-performance tradeoffs exist at a higher level of abstraction in

asynchronous circuits. Section 4.1 discussed a tradeoff between unpipelined and

decomposed pipelined communicating processes. Larger unpipelined processes are

typically slower and lower energy, and are appropriate when they are infrequently

found on the critical path. From Section 4.3, the natural tree-like topology of

many computations gives designers some freedom to decompose expressions into

different structures, depending on the criticality of inputs.
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Other common structures that can be optimized are selection structures in

CHP. Selections can come from flow control statements such as branches and

conditional loops, and implicit selections in indexed references, such as X [i]?(x ) or

y := x[i]. Accesses to large memory arrays are a common target for optimization.

Larger memories are slow due to long wires and high capacitive loads on word-

lines and bit-lines. Memory arrays are often uniformly banked and partitioned to

improve the physical properties for performance.

However, skewed access distributions of arrays can provide opportunities to

further improve average-case performance by favoring common cases, as demon-

strated in non-uniform access asynchronous register files [17, 18]. Asynchronous

designs such as the Lutonium micro-controller and SNAP sensor-network proces-

sor have also featured multi-level datapaths that place frequently used functional

units on a faster bus, while seldom used units accessed a second-level bus to reduce

load on the fast bus [14, 30, 43]. (The basic principle is analogous with information

theory, which explains how data can be compressed by encoding common words

with shorter strings, such as Huffman coding.) Optimizing common cases at the

expense of infrequent cases can result in a net improvement over uniform accesses.

This paradigm is especially important to latency-tolerant and self-timed design

styles such as asynchronous VLSI.

Selection structures can come in two flavors: one-to-many or many-to-one

(many-to-many can be a composition of these). Writing to an element of an array is

an example of a one-to-many selection, and reading from an array is an example of a

many-to-one selection. One simple way to profile index statistic is to observe the se-

quence of values on an index variable from the state-change stream using the library

procedures introduced in Section 3.5.3: chpsim-state-trace-focus-reference,

and chpsim-state-trace-single-reference-values (listed in Appendix F.2.2).
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A histogram of index values with sufficiently skewed statistics (mathematically, low

entropy) can suggest an opportunity to optimize by restructuring an array access.

Every deterministic selection (branch) in CHP has a selection event that fans

out to one of several branches, and eventually re-converges at the end of selection.

If the performance of the branch event depends on the number of branches, then it

is worth studying whether or not the distribution of branches taken is balanced or

skewed. A distribution heavily favoring one branch may be grounds for restructur-

ing all other cases to a second-level branch. One such tool that can profile branches

is TAST, from TIMA, which specifically looks for restructuring opportunities [60].

TAST, however, does not provide a general framework for constructing arbitrary

trace analyses; users are limited to analysis routines provided by the tool authors.

The other common selection structures found in asynchronous circuits are splits

and merges, which route channels one-to-many and many-to-one respectively (Ap-

pendix B.4). These structures are often found on multi-level buses and datapaths

in existing processors [30, 43]. Splits and merges are somewhat unique to asyn-

chronous circuits; it is important to distinguish them from multiplexers (muxes)

and demultiplexers (demuxes). Conventional muxes have no notion of channel

handshaking, they passively forward a signal from many-to-one in combinational

logic, while non-selected inputs are ignored. Without handshaking, outputs are

simply wire-copied to multiple destinations, where they can either be used or ig-

nored. An asynchronous merge, however, enables an output channel to receive a

token from one of several input channels, while blocking communication on all other

inputs channels. An asynchronous split forwards a token from an input channel

to one of many output channels, while stopping communication on non-selected

output channels. Each iteration of a split or merge process also consumes the con-

trol token that selects the channel. To summarize, splits and merges operate on
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asynchronous channels and tokens, whereas muxes and demuxes operate on values.

The performance of single-stage splits and merges is determined by the number

of input or output channels. Larger structures have greater internal capacitance

and consequently can achieve slower peak throughput. Splits and merges can be de-

composed into multi-level structures to improve the overall achievable throughput,

but at the cost of forward latency. Restructuring must be justified by the statistics

of the selection and the criticality of each case. Cases that are more throughput-

critical favor finer decompositions, but cases that are more latency-critical should

be closer to the root of the structure. Our trace analysis framework gives the

ability to study criticality of split and merge structures in sufficient detail to justify

restructuring them as optimizations.

4.6 Replication vs. Coalescing

The last set of transformations we examine emphasizes the limitless possibilities

of parallel program transformations available to asynchronous circuit designers. It

is the overwhelming choices of equivalent high-level programs that motivate an

analysis framework to tame the otherwise intractable exploration of design spaces.

The role of trace analysis is to prune the space of local transformations to explore.

This section focuses on opportunities to replicate or share processes in parallel

programs.

Perhaps the greatest motivation for sharing structures is area reduction, which

can be significant if the program consists of repetitive and under-utilized struc-

tures. Area and circuitry reduction directly leads to reduced static power dissipa-

tion, which is accounting for a larger fraction of integrated circuits’ power budgets

as transistor feature sizes continue to shrink. The question a designer asks is:

when is it legal and beneficial to share a process, where one process performs the
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duty of multiple identical processes? In this context, ‘process’ refers loosely to

any computation that can be modularly factored out (and can be re-used), such

as expressions. For example, since integer multiplication and division are costly

in area, designers often seek to share a few number of units across an entire de-

sign. Integer arithmetic and logical operations are common inside microprocessors,

however, since they are small and frequently used, many instances can be found

in typical designs.

The software abstraction of executing code gives no cost to calling the same

(side-effect free) procedure from multiple (even concurrent) call sites; every pro-

cedure call executes in its own frame, there is no conflict in re-using the same

procedure code. Without the abstraction of an execution frame, hardware de-

sign presents interesting design tradeoffs in process sharing. Software compilers

have a similar challenge in procedure inlining. Inlining can bring performance im-

provements by reducing call-return overhead, but at the cost of code bloat from

replication. Excessive inlining can reduce instruction locality and cache perfor-

mance. Decisions to inline code can be aided by profiling the importance of each

call site at run time. Likewise, profiling the execution of concurrent hardware can

lead to better decisions to replicate or share processes.

4.6.1 Temporal Activity Analysis

It can be very difficult to statically analyze a massively parallel program to deter-

mine exactly when a process may be used. A process is said to be in use when it

is not idly waiting for channel inputs2. In terms of event graphs (and simulated

execution, Section 3.2.1), a process is not in use when its only active events are

blocked-waits on channel receives; at all other times, a process is said to be in use.

2We restrict our attention to only processes that communicate strictly over channels,
and not through shared variables.
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Given this definition, one can construct temporal analyses that operate on the

simulation trace files. The general outline of a temporal analysis is:

1. define initial state object S

2. for every event e in trace (forward in time)

3. update state S with procedure P on event e

The visiting state object S can keep track of any information from the event

stream, including whole subsets of the stream. A procedure for temporal analysis

will record times at which the user-defined state changes depending on the events

seen. For example, the following procedure outline targets all processes of a certain

type, and determines when each instance is ‘in use’:

1. given trace event e and state S

2. let p be the index of the process to which e belongs

3. if type T (p) is the type of interest

4. if e changes the tracked in-use state S of process p

5. append to history of state change new state and timestamp t(e)

6. end if

7. end if

The utilization profile accumulated in S contains a series of times at which each

process’ state changed — in this context, state corresponds to whether or not

a process is ‘in use.’ The utilization profile per instance informs a designer (or

synthesizer) of possibilities for sharing one process among multiple locations, also

known as time-multiplexing. A set of instances whose utilization profiles do not

overlap are potentially good candidates for sharing or coalescing3. Conversely, a

3The utilization profile however lacks information about the physical locality of the
examined processes, which can account for the communication cost of sharing. Post-
placement information would also be useful in filtering candidates for sharing.
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process that is constantly in use and on the critical path may be a good candidate

for replicating to improve throughput.

Temporal analysis is just a general concept with a wide variety of applications.

For studying pipeline dynamics, temporal analysis can be used to collect statistics

on the average occupancy of a FIFO, which can help slack matching or FIFO re-

structuring. Activity analysis can be used to construct energy profiles and evaluate

local power dissipation over a sliding window of time. In this section, we focus on

activity profiling as a means of determining where it may be beneficial to replicate

or share processes.

4.6.2 Coalescing Transformation

The search for process-sharing opportunities can start by statically examining all

expressions in the entire CHP parallel program. All instances of the same expres-

sion operators can be identified using static analysis. Larger compound expressions

can be also be found searching beyond single operators4.

Initial specifications for asynchronous circuits are often un-decomposed and ex-

press little concurrency. Consequently, sequential specifications often contain iden-

tical (but independent) instances of the same computation in one large outer loop.

Consider the following examples with multiple multiply-and-accumulate (MAC)

expressions:

define MACSEQ ≡
*[. . . ;

x := a · b + c;
. . . ;
y := d · e + f
]

4This differs from common subexpression detection and elimination in software com-
pilers, where the leaves (literals) of common expressions must match — in this context,
we are only interested in common expression structures.
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define MACCOND ≡
*[. . . ;

[g → . . . ; x := a · b + c; . . .
[]else → . . . ; y := d · e + f ; . . .
]

]

define MACPARA ≡
*[. . . ;
{x := a · b + c; . . .}, {y := d · e + f ; . . .};
. . .

]

MAC MAC

X !

A? B? C?

Y !

D? E? F ?

Figure 4.6: Independent, replicated function
units can operate concurrently.

MAC

X ! Y !

D? E?B? C? F ?A?

J K L

R

Figure 4.7: Single function
unit shared in alternation

The MACSEQ process uses the MAC operation twice in sequence per loop iter-

ation, the MACCOND process uses the MAC operation once per iteration in an

exclusively guarded clause, and the MACPARA contains two explicitly concurrent

operations. In all of the above processes, there is opportunity to re-use a sin-

gle MAC unit. If we project (cf. projection [41]) variable definitions into explicit

channel communications, MACSEQ would be rewritten like:

define MACSEQ .a ≡
*[A?(a),B?(b),C ?(c);

x := a · b + c;
X !(x );
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. . . ;
D?(d),E?(e),F?(f );
y := d · e + f ;
Y !(y)

]

Both instance of the MAC operation operate on independent variables, i.e., there

are no flow dependencies between them, so one can “factor out” a common process

definition, MAC . Figure 4.6 shows two instances of MAC s operating concur-

rently and independently. After factoring out two independent MAC operations,

MACSEQ looks like:

define MACSEQ .b ≡
*[A!(a),B !(b),C !(c);

X ?(x );
. . . ;
D !(d),E !(e),F !(f );
Y ?(y)

]

define MAC (A?,B?,C ?,X !) ≡
*[A?(a),B?(b),C ?(c);

x := a · b + c;
X !(x );

]

MAC P ,Q ; // instance declaration
P(A,B ,C ,X ); // port connection
Q(D ,E ,F ,Y );

Recall from the original sequential program for MACSEQ , that the MAC op-

erations occur in strict alternation. Although decompositions of the program may

gradually add concurrency (Section 4.1), it is also correct to enforce sequential

alternation in the original specification decompositions. Sequentializing transfor-

mations that reduce concurrency are legal as long as the interface semantics are

preserved. If we maintain strict alternation, then we guarantee that the two in-

stances of MAC will never be in use at the same time. Perfectly interleaving
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utilization is an ideal situation that can warrant sharing of two or more processes.

One way to share a process whose use is strictly alternating is to wrap split- and

merge-alternators around the interface channels, shown in Figure 4.7. Alternators

are also known as round-robin structures. A generic merge-alternator is listed as

Program B.12, and a split-alternator is listed as Program B.11. Coordinated sets

of alternators can redirect inputs and outputs to a process to time-multiplex its

use through replicated interfaces. The alternating implementation of Figure 4.7

can be defined as follows:

define ALTMAC (A?,B?,C ?,D?,E?,F?,X !,Y !) ≡
MAC P(J ,K ,L,R);
*[{A?(a); J !(a)}, {B?(b);K !(b)}, {C ?(c),L!(c)};

R?(x );X !(x );
{D?(d); J !(d)}, {E?(e);K !(e)}, {F?(f ),L!(f )};
R?(y);Y !(y);

]

or in terms of split- and merge-alternators (Figure 4.7):

define ALTMAC (A?,B?,C ?,D?,E?,F?,X !,Y !) ≡
MAC P(J ,K ,L,R);
ALTMERGE (A,D , J );
ALTMERGE (B ,E ,K );
ALTMERGE (C ,F ,L);
ALTSPLIT (X ,Y ,R);

The area saved is roughly the area of one MAC process, if the area of the alternators

is small in comparison.

In the MACCOND process, once instances of the MAC operation have been

identified, the MAC process can be factored out of exclusive branches:

*[. . . ;
[g → . . . ;A!(a),B !(b),C !(c);X ?(x ); . . .
[]else → . . . ;A!(d),B !(e),C !(f );X ?(y); . . .
]

]

MAC (A,B ,C ,X );

The occurrences of the same channel communications in multiple branches are
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implicitly controlled splits and merges, which are simpler to implement than alter-

nators because they contain no state between iterations. In this case, the control

for the splits and merges is the boolean guard g.

Note that had we re-written MACSEQ using the same channels:

define MACSEQ .c ≡
*[A!(a),B !(b),C !(c);

X ?(x );
. . . ;
A!(d),B !(e),C !(f );
X ?(y)

]

define MAC (A?,B?,C ?,X !) ≡ . . .
MAC P ;
P(A,B ,C ,X );

there would be an implicit alternators on the channels interfacing to MAC . The

MACSEQ and MACSEQ .c programs can be written (or internally represented)

as definition MACSEQ .b to articulate def-use chains of unrelated variables for

dataflow analyses.

We can also take a program with explicit concurrence such as MACPARA and

sequentialize use of common resources because S ;T is a legal execution of S ,T .

Even in cases where dynamic activity profiling shows frequent concurrent use of

the same type of resource, designers have the option to trade off performance for

area reduction by sharing resources among multiple uses. All of the aforementioned

equivalent definitions of MACSEQ are valid implementations of MACPARA; shar-

ing a resource (in this case, with alternation around a functional unit) can save

considerable area from large resources. Without quantitative measurements from

trace analysis of different program refinements, it is difficult to evaluate the area-

performance tradeoffs with resource sharing or replication.

Replication. A parallel program may also be written initially with explicit

sharing, so searching for opportunities to replicate overloaded units to improve
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X ! Y !

Figure 4.8: Pipelined function unit,
shared in alternation

arbitrator

F
IF

O

MAC

E?B? C? F ?A?

X ! Y !

D?

Figure 4.9: Single function unit shared
by arbitration

performance is also important. Since many programs are input-dependent, over-

loaded units often cannot be recognized until their execution is traced and profiled.

The immediate benefit of replication is increase in achievable throughput; an ap-

plication whose performance is bounded by operation bandwidth (e.g. MAC) can

alleviate its bottleneck by using more units in parallel. Processes that have been

identified with high utilization and frequently occur on the critical path are likely

to benefit in performance after replication; the additional area cost can be justified

by speedup.

Combining transformations. Sharing one process among multiple uses (in

the interest of reducing area) can possibly reduce the throughput of the whole

program. After sharing a structure, profiling may reveal that a new critical path

limits the repetition rate of the structure. One may be able to recover some of the

lost performance by pipelining the shared computation structure, as discussed in

Section 4.2 (Figure 4.8). Pipelining a shared structure will allow it to support mul-
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MAC MAC

X !

B? C?A?

Figure 4.10: Internally replicated function units can be accessed through alterna-
tors with a single-unit interface.

tiple concurrent operations and shorten internal critical paths, thereby improving

throughput. Pipelining does incur an overhead cost in communication circuits, but

the overhead is justifiable if it is insignificant compared to the area of the original

unpipelined structure.

Another method for replicating processes uses alternators to dispatch to locally

replicated processes in a round-robin order, as shown in Figure 4.10. This transfor-

mation is legal because results are still produced in the same order that inputs are

received, i.e., FIFO order is maintained. The result is a single interface to a pro-

cess, whose internal replication effectively increases throughput and concurrency.

Local replication is useful when it is impractical to pipeline a particular process.

Simulation and trace analysis can be used to weigh the area cost of replication

against the speedup gained.
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4.6.3 Nondeterministic Dispatching

In practice, one will find much larger and more complex programs than our little

multiply-and-accumulate operator examples. Static analysis of parallel programs

can quickly become unwieldy because the set of distributed states that can be

reached from any given state grows exponentially with the number of concurrent

actions per fork. (Recall that parallel programming requires no timing assump-

tions, and thus, cannot rely on timing assumptions to partially order concurrent

actions. Conservative families of asynchronous circuits, such as QDI, rely on only

modest timing assumption which only negligibly reduce the space of reachable

states.) In many cases, static analyses will not be able to infer any ordering re-

lations between uses of identical processes. To share a process among different

uses without any knowledge of sequencing, a designer can resort to arbitration

or dynamic dispatching. Arbitrated dispatching, which is akin to dynamic task

allocation in parallel software, can be useful when the computation of interest has

greatly varying or input-dependent timing characteristics [16]. Without arbitra-

tion, programs are restricted to operating in strict order, i.e., values on channels

will be ordered deterministically. The next example demonstrates how arbitrated

resource sharing can be useful in deterministic parallel programs without timing

variations. Consider the following program that conditionally computes up to two

MAC results per iteration:

define MULTIMAC ≡
*[. . . ;

{[g1 → x := a · b + c; . . .[]else → skip],
[g2 → y := d · e + f ; . . .[]else → skip]};

. . .
]

Since use of the MAC operations is not ordered or exclusive, synthesizing the

program may require up to two MAC units. However, the program can be rewritten
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using only one MAC unit with arbitrated sharing. In cases such as this, the

identical computations can be coalesced into a single functional unit, shared by

arbitration, as shown in Figure 4.9. The arbitration process forwards one set

operands to the shared functional unit when all inputs from a set are ready. The

result of arbitration is also forwarded to output merge after the functional unit,

which produces results in the same (FIFO) order from arbitration. The resulting

process behaves like multiple functional units, but uses only one overloaded unit.

An important characteristic to note is that the nondeterminism from arbitrated

sharing is localized to one process alone; the effects of local nondeterminism do

not disturb the interaction with the rest of the parallel program. Non-invasiveness

is generally preferred when exploring local program transformations as it requires

minimal rewriting.

In MULTIMAC , during iterations where two MAC operations are required,

they will be sequentialized by arbitration, which still results in legal executions

of the concurrent specification, at the cost of some performance. When only one

MAC operation is needed, there is no contention, and the design pays only the

performance overhead of the wrapper arbitration and merge. This transformation

can be appealing if the number of functional units shared meet demands most

of the time without sequentialization penalty, i.e., the sequentialization scenario

rarely occurs on the critical path. If the shared function unit can be pipelined, then

the overloaded unit can support multiple concurrent computations (represented in

Figure 4.8) and gain back some performance. Next, we show how resource sharing

can be generalized to pooling using arbitration.

Resource pooling and partitioning. By combining local arbitrated dis-

patching with resource replication, one can create a pool of M identical resources

shared among N users. One way to organize a pool is to replace the shared MAC
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process in Figure 4.9 with the alternator structure in Figure 4.10. Pooling is an ap-

pealing option when the capacity of a single shared unit does not meet the average

demand from multiple users. However, the channel between input arbitration and

alternator dispatch can become a new bottleneck; every action must pass through

a single channel (or set thereof), which scales poorly with size. A typical solu-

tion to congesting channels is to partition the users and resources (and channels)

into K disjoint sets, effectively distributing contention among K sequentialization

points. Different partitioning schemes exhibit a tradeoff between performance and

resource contention; a partitioned set of resources is less capable of load-balancing

than a unified set of resources. Activity profiling can justify the cost of pooling

resources, and help find reasonable static partitionings. In an ideal situation, pro-

filing may reveal a partitioning that suitably balances load among all partitions.

This class of problems involving design space exploration of resources sizes and

partition topologies is ubiquitous in computer architecture.

The choice to use shared arbitration can only be justified by studying the run-

time dynamics from simulation. Again, a temporal activity analysis of a program

can provide insight about the extent of local resource contention one might expect

from sharing transformations. The results from temporal analyses can be used to

determine which occurrences of the same expression can share the same function

unit with minimal contention. Looking for minimal activity-time overlap is only a

simple heuristic for clustering operations into a limited number of functional units.

However, computation activity may overlap in situations where the results are not

on the critical path, that is, the result produced has sufficient slack time to delay

before it becomes critical. By combining critical path slack-time analysis (Sec-

tion 3.6.4) with activity overlap analysis, one can better estimate the performance

impact of sharing instances of function units.
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4.6.4 Arbitration with Reordering

.

MAC MAC

arbitrator

arbitrator

tagX !

B?A? C?

X !

Figure 4.11: Arbitration can be used to dispatch operands to first-available pro-
cesses and to reorder results from replicated units.

Previous examples have worked under the implicit assumption that all MAC

operations take equal time, however, that is not the case for general computations.

Variable-latency operations introduce opportunities where arbitration may speed

up programs over those without arbitration. An example of a variable latency

computation is an iterative multiplication (or division), where the number of iter-

ations depends on the multiplicand (or divisor). Without re-ordering, results are

computed first-in-first-out (FIFO), even when work is distributed in a round-robin

order by alternators as in Figure 4.10; results that are quickly computed must still

wait behind longer operations at the result merge. If earlier results were allowed

to overtake the later results from previous iterations, some performance could be

gained. Figure 4.11 shows how one might wrap around replicated processes to

allow results to be dynamically reordered. Operands are passed to the process

through one set of interface channels and dispatched to the ‘first-available’ pro-
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cess, by arbitrating the channel acknowledgments. Output arbitration will pass

results through first-come-first-serve (FCFS), not necessarily in the same order

that computation was dispatched. This transformation is not entirely transparent;

reordering requires that output arbitration to track and communicate its selections

(such as channel tagX in Figure 4.11), so that results can be correctly matched up

with the corresponding sequence of inputs. The surrounding processes involved

in this replication scheme need to be transformed to sort out the results based

on channel tagX . This arbitrated replication scheme allows one of the internal

units to take a longer time without blocking fast operations on other free internal

units. The cost of this transformation (area and arbitration overhead) needs to be

justified with trace statistics:

• Does the computation exhibit variable delay-to-result?

• Does the critical path show potential for benefit from reordering? In other
words, are there large slack times available? (Section 3.6.3)

4.7 Application to Synthesis Optimization

Design choices for resource replication and sharing fall in the domain of general

synthesis problems. What a designer writes in high-level CHP need not be in-

terpreted literally; synthesizers are free to implement many circuit details and

structures. Automated synthesis can be optimized more effectively with statis-

tics from trace profiling, and even preliminary placements and routings (to exploit

physical locality).

One of the original weaknesses of conventional syntax-directed and data-driven

translations was the inability to re-use instances of the same computation [7, 77].

With a detailed activity profile and analysis, one could potentially annotate and

direct the synthesis to coalesce re-usable computations that consume much area.

Data-driven and syntax-directed translation often results in circuits that are overly
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decomposed, resulting in excessive pipelining which may run into area or resource

constraints. One approach to post-translation clustering (re-composing) processes

optimizes clustering along critical path [78]. Their approach is concerned with

fusing computations into a single PCHB stage, which is akin to de-pipelining. Their

decisions to combine or pipeline computations are based on the characteristics of

the resulting PCHB circuits, such as the expected performance of the precharge

logic relative to a target cycle time.

The span of program transformations that can be applied to concurrent pro-

grams is innumerable; it is infeasible to consider the entire set of equivalent pro-

grams under all possible transformations. Many local transformations are or-

thogonal and can be applied independently of one another, which results in an

exponential number of equivalent versions to consider.

Profile analysis can help reduce the set of transformations to consider, priori-

tize candidate transformations, and guide transformations in the correct direction.

Our trace query framework can be used to assemble arbitrarily complex and exten-

sible analyses, which can then be used interactively or automatically for program

rewriting iterations. Interactivity is essential for a user to be able to dynamically

construct a series of queries during diagnostic sessions.

This section presented a few classes of transformations, and contexts in which

they are not obviously beneficial without run-time profile information. In each

scenario, we outlined the analyses that one would construct from trace query prim-

itives, to inform a designer (or compiler) where to focus optimization efforts and

in which direction transformations should be applied.
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CHAPTER 5

APPLICATIONS: CASE STUDIES

However smart a robot or computer may be, it can only do exactly what
you tell it to do and then stop. To keep thinking, it has to want to. It
has to be motivated. You can’t think if you can’t feel. So the ship’s
intelligence had to be imbued with emotions, with personality. And its
name was Titania.

Terry Jones, “Douglas Adams’s Starship Titanic”

We have shown how trace profiling of high-level parallel programs (target-

ing asynchronous circuits) can be crucial to identifying and selecting appropri-

ate program transformations for optimization or trading off between metrics. To

demonstrate the utility of our analysis framework, we analyze a series of small

design-space exploration problems. Each case exhibits different design tradeoffs

and optimization problems that are encountered in practice.

5.1 Fibonacci Generator

initial token

+

copy

buf

buf

initial token

S2

S

B A[1]

A[0]

Figure 5.1: Schematic of a decomposed Fibonacci sequence generator
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pid=2: sb

pid=3: ab

pid=4: ad
pid=5: sc

[0] pid=0

[3]
sb.x:=1

[6]
ab.x:=1

[12] [7]
S2?(sc.a)

[1]
S2!(sb.x)

[4]
B!(ab.x)

[10]
B?(ad.a)

[11]
A[1]?(ad.b) [16]

[2]
S?(sb.x)

[8]
S!(ad.a+ad.b)

[5]
A[0]?(ab.x)

[14]
A[0]!(sc.a)

[15]
A[1]!(sc.a)[9]

[13]

Figure 5.2: CHP event graph of initially decomposed Fibonacci sequence generator.
Bold-red edges mark the critical path from Table 5.1.

The first program is a simple Fibonacci sequence generator, shown in Figure 5.1.

A sequential specification in CHP is:

a; = 1, b := 1;
*[c := a + b;

a := b;
b := c

]

Even though this process is closed (no ports), one could easily copy a variable

to an output channel on every iteration to obtain a sequence of values. We omit

such a channel because, for simulation purposes, it would simply be directed to

a token sink and discarded. In this program, variables a and b have loop-carried

dependencies, whereas c can be a local variable because it is dead (in the dataflow

sense) past the end of the loop. A finely decomposed version of the loop can be

written:

*[A[1]?(a),B?(b); S !(a + b)]
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pid=4: b2

pid=5: a

pid=6: c

pid=2: b0

pid=3: b1

[1]

b0.x:=1

[3]

b0.R!(b0.x)

[2]

b0.L?(b0.x)

[14]

c.A?(c.a)

[4]

b1.x:=1

[6]

b1.R!(b1.x)

[5]

b1.L?(b1.x)

[7]

b2.L?(b2.x)

[8]

b2.R!(b2.x)

[12]

a.A?(a.a)

[9]

[13]

a.B?(a.b)

[11]

[10]

a.S!(a.a+a.b)

[18]

[16]

c.O[0]!(c.a)c.O[1]!(c.a)

[15]

[17]

S2

BB

B

SA[0]A[1]

Figure 5.3: Event graph of a partially slack-matched Fibonacci sequence generator.
Bold-red edges mark the critical path from Table 5.2.

‖ s := 1; *[S2!(s); S?(s)] // initial token buffer
‖ *[S2?(o);A[0]!(o),A[1]!(o)] // copy
‖ a := 1; *[B !(x );A[0]?(x )] // initial token buffer

The expanded CHP event graph of the initial decomposed program is shown in

Figure 5.2. The decomposed processes assume the following delays in simulation:
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pid=3: b1

pid=4: b2

pid=5: b3

pid=6: a

pid=7: c

pid=2: b0

[1]

b0.x:=1

[3]

b0.R!(b0.x)

[2]

b0.L?(b0.x)

[16]

c.A?(c.a)

[4]

b1.x:=1

[6]

b1.R!(b1.x)

[5]

b1.L?(b1.x)

[7]

b2.L?(b2.x)

[8]

b2.R!(b2.x)

[9]

b3.L?(b3.x)

[10]

b3.R!(b3.x)

[14]

a.A?(a.a)

[11]

[15]

a.B?(a.b)

[13]

[12]

a.S!(a.a+a.b)

[20]

[18]

c.O[0]!(c.a)

[19]

c.O[1]!(c.a)

[17]

S2

BBB

BBB

SA[0]A[1]

Figure 5.4: Event graph of a fully slack-matched Fibonacci sequence generator.
Bold-red edges mark the critical path from Table 5.3.

forward backward
process latency latency
adder 3 5
copy 2 6
buffer 2 5
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Forward latency is the time delay from the moment that the send action in each

process is “ready to execute” to the time that the event actually occurs. Backward

latency is the analogous delay for receive actions. A lower bound for the cycle time

of the composition of all processes is the maximum target cycle time of any process,

which is the adder, with 8 (3+5) time units, and the copy, with 8 (2+6) time units.

Even without intimate knowledge of a particular design, an engineer who is

asked to optimize this design for performance can start with a critical path analysis

on a simulation trace (Section 3.6, Program F.4). Table 5.1 shows an excerpt of

the critical path from simulating the initial decomposed version of the Fibonacci

loop. The table is organized as described in Section 4.2.2.

This initial version of our decomposed Fibonacci generator has a cycle time of

11 time units (from observing the repetition time of any single event); this design

fails to achieve the minimum cycle time of 8 units. We analyze the critical path

for slack matching problems in the same manner as in Section 4.2.2. To emphasize

the critical events that cross process boundaries through channel communications,

we have paired critical send-receive events together in Table 5.1. The send-receive

event pairs in Figure 5.2 (with named channels) are: S (8,2), A[0] (14,5), A[1]

(15,11), S2 (1,7), B (4,10). We query whether these channels are sender-critical

or receiver-critical by examining paired sends and receives on the critical path

(Program F.12):

; ‘crit’ is the critical path stream
hacchpsimguile> (channel-send-receive-criticality crit "A[0]")

(0 . 7)

hacchpsimguile> (channel-send-receive-criticality crit "A[1]")

(7 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "B")

(0 . 7)

hacchpsimguile> (channel-send-receive-criticality crit "S")

(0 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "S2")

(1 . 0)
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Table 5.1: Critical path through a
minimum-slack Fibonacci loop (Fig-
ure 5.2)

index time event crit.

92 76.0 16 90
90 75.0 7 87
87 70.0 13 85
85 70.0 14 84
84 70.0 5 77
77 65.0 4 76
76 65.0 10 73
73 60.0 12 70
70 59.0 8 67
67 57.0 9 66
66 57.0 11 65
65 57.0 15 64
64 55.0 16 62
62 54.0 7 59
59 49.0 13 57
57 49.0 14 56
56 49.0 5 49
49 44.0 4 48
48 44.0 10 45
45 39.0 12 42
42 38.0 8 39
39 36.0 9 38
38 36.0 11 37
37 36.0 15 36
36 34.0 16 34

......

Table 5.2: Critical path through a
partially slack-matched Fibonacci loop
(Figure 5.3)

index time event crit.

159 95.0 16 158
158 95.0 5 149
149 90.0 6 148
148 90.0 7 138
138 85.0 8 137
137 85.0 12 133
133 80.0 9 129
129 79.0 10 128
128 77.0 11 126
126 77.0 13 125
125 77.0 17 122
122 75.0 18 118
118 74.0 14 114
114 69.0 15 111
111 69.0 16 110
110 69.0 5 101
101 64.0 6 100
100 64.0 7 90
90 59.0 8 89
89 59.0 12 85
85 54.0 9 81
81 53.0 10 80
80 51.0 11 78
78 51.0 13 77
77 51.0 17 74
74 49.0 18 70
70 48.0 14 66
66 43.0 15 63
63 43.0 16 62

......

Among these channel events, the only send-receive actions that appear paired on

the critical path are A[0] (14,5), A[1] (15,11), and B (4,10). Among these pairs,

A[0] and B are always receiver-critical, and A[1] is always sender-critical. (S and
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S2 are not latency critical.) From this, we deduce that the path through channel

B has sufficient slack (buffering), and the latency through A[1] cannot be reduced

because there are no buffers to remove on that path. Since the path through A[0]

and B is always blocked waiting for the receiver, increasing buffering is likely to

improve overall performance. The result of the analysis directs the designer to try

adding buffering on the path through channels A[0] and B .

Table 5.3: Critical path through a fully slack-matched Fibonacci loop (Figure 5.4)

index time event crit.

98 54.0 16 89
89 49.0 17 87
87 49.0 19 82
82 47.0 20 80
80 46.0 16 71
71 41.0 17 69
69 41.0 19 64
64 39.0 20 62
62 38.0 16 53
53 33.0 17 51
51 33.0 19 46
46 31.0 20 44
44 30.0 16 35
35 25.0 17 33
33 25.0 19 28
28 23.0 20 26
26 22.0 16 18

......

In our second revision of the Fibonacci generator (Figure 5.3), we add one more

buffer on channel B (or equivalently, A[0]), which results in a cycle time of 9 time

units, still shy of peak performance. The new critical path is shown in Table 5.2.

Critical path analysis on channel events indicates that the path through A[0],

BB , and B is still receiver-critical and is limiting the performance, like the initial

design. The analysis suggests adding more slack on the receiver-critical path.
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; ‘crit’ is the critical path stream
hacchpsimguile> (channel-send-receive-criticality crit "A[0]")

(0 . 4)

hacchpsimguile> (channel-send-receive-criticality crit "A[1]")

(3 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "B")

(0 . 3)

hacchpsimguile> (channel-send-receive-criticality crit "BB")

(0 . 3)

hacchpsimguile> (channel-send-receive-criticality crit "S")

(0 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "S2")

(1 . 0)

The third revision adds yet one more buffer on channel B (Figure 5.4) and

achieves the minimum cycle time of 8 units. The new critical path is shown in

Table 5.3,

; ‘crit’ is the critical path stream
hacchpsimguile> (channel-send-receive-criticality crit "A[0]")

(1 . 1)

hacchpsimguile> (channel-send-receive-criticality crit "A[1]")

(0 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "B")

(0 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "BB")

(0 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "BBB")

(0 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "S")

(0 . 0)

hacchpsimguile> (channel-send-receive-criticality crit "S2")

(0 . 0)

The set of recurring events in the new critical path (16,17,19,20) no longer crosses

process boundaries and corresponds to only events in the adder process, whose

cycle time is 8. The channel criticality analysis finds that there are no repeated

occurrences of send-receive event-pairs on the critical path; the design’s perfor-

mance is limited by the throughput of a single process, the adder.
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; critical path contains mostly events 16, 17, 19, 20
hacchpsimguile> (map hac:chpsim-event-process-id

’(16 17 19 20))

(6 6 6 6)

hacchpsimguile> (hac:parse-reference "fibber.a")

(process . 6)

; this is the adder process

This final design is optimally slack-matched; adding or removing of buffers will not

improve the performance any further. Table 5.4 summarizes our design revision

history with an energy assessment.

Experienced asynchronous VLSI designers probably identified this example as

a classic slack matching problem that can be solved with straightforward analysis

of steady-state pipeline dynamics. Nevertheless, the analyses developed within our

trace analysis framework can lead all designers to the same optimization conclu-

sions from slack matching, but through fundamental critical path analysis. A trace

analysis framework can better assess more complicated pipelines that do not con-

veniently exhibit regular steady state behavior. The interactive analysis interface

(Scheme) gives users the ability to examine data and patterns in trace data that

might not otherwise be considered in existing generalized analyses.

Table 5.4: Summary of tradeoffs of three designs of Fibonacci loop

rev. area energy cycle time
1 Abaseline Ebaseline 11
2 Abaseline + Abuf Ebaseline + Ebuf 9
3 Abaseline + 2Abuf Ebaseline + 2Ebuf 8

Having compared several versions of the decomposed Fibonacci loop, we can

also perform some first-order estimations of the area and energy tradeoffs against

performance. The initial decomposition is composed of 1 adder, 1 copy, and 2

initial-token buffers, and the revisions added only 1 and 2 buffers respectively.
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These design choices range from an un-optimized design with minimal area and

minimal energy per token, to a slack-matched design the greater area and energy

per token. We have already found the throughput-optimal solution, but from

an energy standpoint, the original design is the most appealing. However, for a

mixed metric such as energy-efficiency (energy× time2
cycle or Eτ 2), all three design

variations may be good candidates because each revision trades off performance

for one of the other metrics. Our analysis framework is a general tool to assist

designers in the exploration of design space tradeoffs.

5.2 Bit-serial Routers

The following example emphasizes the importance of simulating and collecting exe-

cution traces on designs that are highly input-dependent . The input (or workload)

to a system can be characterized by data and timing. The operating characteris-

tics of parallel programs executing under different workloads can heavily influence

the cost and benefit of transformations being considered for optimization. Net-

work routers are one class of designs whose design and optimization are heavily

dependent on traffic patterns. Our example of a bit-serial model is a significantly

simplified circuit that performs bit-serial routing. The following sequential CHP

specifies the operation of the bit-serial router:

define BITROUTER(L[0..1]?,R[0..1]!) ≡
*[[L[0]→ L[0]?(lc, dir);

*[¬lc → L[0]?(lc, ld); R[dir]!(lc, ld)]

|L[1]→ L[1]?(lc, dir);
*[¬lc → L[1]?(lc, ld); R[dir]!(lc, ld)]

]]

To summarize, the router arbitrates between two sources, L[0] and L[1], and

beheads the leading bit of each packet; every packet that passes through this

router will be shortened by one symbol. The value of the leading bit is the output
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destination of the payload of each packet, R[0] or R[1]. A packet terminates once

it sees a stop-bit, and the cycle repeats. When there are no incoming packets, the

process sits idle.

As usual, we decompose this sequential specification to simplify synthesis and

increase performance. Since the program is symmetric and shares common action

sequences in both cases, one natural way to decompose the bit-router is to perform

arbitration in the front process and destination routing in a back process. The

resulting program is a composition of a route-split and a route-merge.

L[0]

L[1]

R[0]

R[1]

A

Figure 5.5: Schematic of a decomposed merge-split bit-serial router

define ROUTEMERGE (L[0..1]?,X !) ≡
*[lc↓;

[L[0]→ *[¬lc → L[0]?(lc, ld); X !(lc, ld)]

|L[1]→ *[¬lc → L[1]?(lc, ld); X !(lc, ld)]
]

]

define ROUTESPLIT (Y ?,R[0..1]!) ≡
*[Y ?(lc, dir);

*[¬lc → Y ?(lc, ld); R[dir]!(lc, ld)]
]

define BITROUTERdecomp(L[0..1]?,R[0..1]!) ≡
ROUTEMERGE M (L,C );
ROUTESPLIT S (C ,R);
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ROUTEMERGE passes arbitrates between incoming packets of bits and forwards

stop-bit-delimited packets to a shared output channel. ROUTESPLIT consumes

the first direction bit of each packet and forwards the rest of the payload to the

selected output channel. The composition is shown in Figure 5.5.

L[0]

L[1]

R[0]

R[1]

A
A

Figure 5.6: Schematic of a decomposed split-merge bit-serial router

Since all packets must pass through the center channel, it can be a possi-

ble bottleneck under workloads with significant activity from both input sources.

However, for routed packets with different destinations, there is an opportunity to

route both packets simultaneously with a different design. The “twin bit-router”

in Figure 5.6 interchanges the split and merge phases so that destination routing

is done before arbitration at the output. The twin design uses twice as many

route-splits and route-merges, and adds three more internal channels, and is thus

expected to be at least double the area of the single bit-router. The energy per

packet in the twin bit-router is comparable: aside from the difference in post-

synthesis wire length, the twin bit-router’s switching activity per packet is slightly

less because the route-split beheads the first symbol earlier and each route-merge

handles one fewer symbol per packet.

Before we can conclude which of these two designs is ‘better’, we compare their

execution times under a variety of input workloads in Table 5.5. We connected a
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Table 5.5: Execution times of single (Figure 5.5) and twin (Figure 5.6) bit-serial
routers under different input workloads

workload single twin % speedup

A 4738 2985 58.727
B 4738 2445 93.7832
C 4757 3137 51.6417
D 4757 3127 52.1266
E 15498 9219 68.1093
F 15555 11969 29.9607
G 15625 15429 1.27034
H 18798 12772 47.1813
I 28352 22438 26.3571

variety of finite workloads to the routers’ inputs, connected ideal token sinks to

the routers’ outputs. Workloads varied by packet length, destination, frequency,

and gap time. The twin router design will never perform worse than the single

router, and the speedup is limited to 100%. The speedups range from negligible

(G) to near-maximum (B) with this set of workloads. We can examine route

and resource contention in more detail with some trace analysis procedures from

Appendix F.2.7. One expects heavily stressed resources (processes) to appear more

frequently on the critical path. We examine critical processes in the twin-bitrouter

on workload G:

; examining workload G on the twin bitrouter
; crit is the critical path stream
hacchpsimguile> (define proc-histo

(make-critical-process-histogram crit))

hacchpsimguile> (print-named-critical-process-histogram

proc-histo)

; process-name: (process-index . count)
BR.RM[0]: (12 . 98)

BR.RM[1]: (13 . 90)

BR.RS[0]: (14 . 29)

BR.RS[1]: (15 . 1496)

; BR.RM[0..1] are the merges, BR.RS[0..1] are the splits
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; other processes omitted ...

The analysis finds that even with the twin bitrouter design, for workload G, one

split process (BR.RS[1]) is by far the most frequent process on the critical path

because the routes are not evenly distributed. Upon discovering this bottleneck, a

designer who is interested in making workload G run faster can explore transforma-

tions on the critical process, such as those discussed in Chapter 4. The framework

provides a convenient interface for examining the execution on any benchmark in

arbitrary detail.

Clearly, the optimal choice of design depends heavily on the characteristics

of the typical workload that the design is expected to encounter. This example

demonstrates the importance of having a flexible simulation and trace analysis

environment to justify design choices with performance comparisons.

L[2]

L[1]

L[0] R[0]

R[1]

R[2]

R[3]

A

A
A

L[3]

Figure 5.7: A merge-merge-split-split (4,4) bit-router

L[2]

L[1]

L[0] R[0]

R[1]

R[2]

R[3]

A
A A

A

L[3]

Figure 5.8: A merge-split-merge-split (4,4) bit-router

If we extend our bit-serial router to take 4 inputs and 4 outputs (denoted (4,4)),

then we have 6 permutations of route-merge and route-split stages to choose from,

shown in Figures 5.7 through 5.12. We name these variations by the sequence of

merges and splits encountered as a packet travel from left to right, e.g. ‘MMSS’

117



L[0]

R[0]

R[1]

R[3]

R[2]

L[3]
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A
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L[2]

L[1]

Figure 5.9: A merge-split-split-merge (4,4) bit-router
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L[2]
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Figure 5.10: A split-merge-merge-split (4,4) bit-router

L[0]

L[1]

L[2]
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A
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R[0]

R[1]

R[3]

R[2]
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A

L[3]

Figure 5.11: A split-merge-split-merge (4,4) bit-router

means merge–merge-split-split, which is our baseline for comparisons. Table 5.6

shows the estimated areas and energy per packet of each design. We also list the

number of channels (edges) in this table because routing and interconnect can

have a significant contribution to total area. The energy expression consists of two
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Figure 5.12: A split-split-merge-merge (4,4) bit-router

terms: the energy through route-merges Em and route-splits Es. The Es term is

invariant because only route-splits reduce the number of symbols output by one.

As packets length increases the relative differences in the Em terms diminish.

Table 5.6: Area and energy breakdown of various (4,4) bit-routers. K is the total
length of a packet (number of symbols), Es is energy per symbol through a split,
Em is energy per symbol through a merge.

#splits #merges #channels energy(K)

MMSS 3 3 13 2KEm + (2K − 1)Es

MSMS 4 4 16 (2K − 1)Em + (2K − 1)Es

MSSM 6 6 22 (2K − 2)Em + (2K − 1)Es

SMMS 6 6 22 (2K − 2)Em + (2K − 1)Es

SMSM 8 8 28 (2K − 3)Em + (2K − 1)Es

SSMM 12 12 40 (2K − 4)Em + (2K − 1)Es

We simulate the (4,4) bit-routers under different workloads and compare their
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Table 5.7: Speedups of various implementations of (4,4) bit-serial routers relative
to the MMSS baseline, under different input workloads (see also Figure 5.13)

work- MMSS MSMS MSSM SMMS SMSM SSMM
load +% +% +% +% +% +%

A 0.0 66.2 78.4 123.1 163.5 235.8
B 0.0 61.3 85.2 120.0 254.1 260.7
C 0.0 61.3 75.9 120.0 254.1 263.8
D 0.0 28.8 58.5 55.6 115.0 163.8
E 0.0 8.4 8.5 8.5 8.6 12.4
F 0.0 63.1 83.2 129.4 182.9 302.2
G 0.0 52.8 79.6 132.0 201.4 255.4
H 0.0 53.2 77.6 98.2 152.3 186.8
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Figure 5.13: Performance of various (4,4) bit-serial routers, normalized to the
MMSS baseline (see also Table 5.7)

execution times in Table 5.7 and Figure 5.13. The entries in this table are nor-

malized speedups relative to the baseline design, ‘MMSS.’ Intuitively, designs with

more routing resources will experience less route contention at run-time, however,

the benefits are quite staggering under different workloads. Workloads with high

destination contention (E) will benefit little from increased routing resources, nor
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will workloads with very sparse packets (low load).

An interesting data point is workload F, which shows a super-linear speedup

with ‘SSMM’, with respect to the number of splits and merges (a linear speedup

with 4x the area would be 300%). This is explained by the fact that workload F’s

packet lengths are short enough that reducing packets lengths by one or two (by

splits) before the merge stages resulted in reduced contention time and additional

measurable speedup.

So far, these initial experiments with different versions of bit-routers are only a

preliminary study of router structures. With the trace analysis framework, one can

study the execution of each workload in greater detail. For instance, one can con-

tinue to look for process bottlenecks with the make-critical-process-histogram

procedure as before with the (2,2) bit-routers. The bottlenecks should become the

focus of subsequent optimization.

Critical path histograms may reveal non-uniformities in congestion — local dif-

ferences in congestion may motivate asymmetric router designs, unlike the ones we

have analyzed. Our initial experiments attempt to isolate the impact of backlog-

ging on performance by using ideal token sinks at the output channels. However

more realistic applications may experience backlogging at the destination ports

which can cause further performance degradation. An appropriate study of back-

logging would vary the amount of buffering on the interconnect channels. Buffering

allows packets to be pushed further through the router during backlogging which

frees up merge/split resources in earlier stages. Both critical channel analysis and

temporal analysis on the FIFO occupancy can indicate whether channels have

sufficient buffering to sustain reasonable performance.

This bit-router design example demonstrates the importance of studying exe-

cution details of different versions of a parallel program operating under different
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workloads. Workloads and benchmarks can drive a significant portion of design

choices and optimizations in large, complex designs. Without dynamic profiling,

optimization choices are typically limited to those found by static analysis. Data

from trace profiling enables designers to better assess design tradeoffs. The bit-

router design is an example of an area-performance tradeoff study. Our analysis

framework can be used to justify the selection of the best design, given the typical

inputs and conditions under which it is expected to operate.

5.3 Summary

The examples in this chapter further demonstrate the capabilities of our trace

analysis infrastructure. With fundamental trace analysis procedures, a designer

can quickly discover the structural performance bottlenecks in an asynchronous

circuit described in a high level. Our infrastructure provides not only a library of

primitives and analysis procedures, but the ability to quickly develop new analysis

routines and packages, tailored to specific needs of the designer. The Fibonacci

example demonstrated how trace analyses can be written to guide the designer in

the correct direction for optimizations, and the bit-router example demonstrated

how analyses can be used to assess variations in design space exploration. Both

of these examples are small for the purpose of proving the concept, however, the

same analyses and summarizing procedures can be used to quickly reduce large

volumes of data that arise from larger designs and longer traces. Finally, every

designer may have different ways of diagnosing performance problems. Our trace

analysis infrastructure does not restrict the ways in which queries and analyses can

be constructed and chained together. It gives users absolute freedom and power

to develop whatever analyses he or she can conjure.
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CHAPTER 6

CONCLUSION

“It was on a dreary night of November that I beheld the accomplish-
ment of my toils... I collected the instruments of life around me, that
I might infuse a spark of being into the lifeless thing that lay at my
feet... by the glimmer of the half-extinguished light, I saw the dull yel-
low eye of the creature open; it breathed hard, and a convulsive motion
agitated its limbs. How can I describe my emotions at this catastrophe,
or how delineate the wretch whom with such infinite pains and care I
had endeavoured to form?”

Mary Wollstonecraft Shelley, Frankenstein

Asynchronous VLSI circuit design has been well understood for decades, how-

ever, mainstream adoption has been impeded by: shortage of educators and ex-

perts, long and incumbent legacy of traditional synchronous design, and skepticism

and uninformed criticism of the asynchronous design. Nevertheless, asynchronous

design is gradually becoming industrialized as designers realize the benefits it has

to offer. Another frequently cited reason for slow pervasion of asynchronous circuit

design is the shortage of design tools. This project was motivated by the need for

asynchronous design tools, without which, design analysis and optimization would

be extremely difficult and tedious.

Conventional approaches to asynchronous circuit synthesis usually start with

a high level sequential (or concurrent) functional description of an application.

Static program analysis and successive refinement (semantic-preserving decompo-

sition and transformations) drive the synthesis of netlists in a top-down manner.

However, there are numerous ways to decompose and synthesize asynchronous cir-

cuits, even within a single family such as QDI circuits. The overwhelming breadth

of design and transformation choices may not be resolvable from static analysis

alone. The role of feedback is to provide information from a latter phase of syn-

thesis back up to a higher-level to better assess the impact of design choices and
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with performance metrics, and steer synthesis in beneficial directions.

Figure 1.1 showed some steps in which profiling feedback can be used to improve

synthesis. One application of particular interest is high-level program rewriting.

By rewriting a concurrent program more explicitly, one can restructure circuits

in ways that low-level, detailed synthesis cannot accomplish. High-level concur-

rent program specifications can express architectural organization more aptly than

low-level netlists. Optimizing concurrent programs at a higher, structural level

translates to better synthesized circuits. The task of writing a high-level, de-

composed concurrent program specification for an asynchronous design is often

assigned to a (preferably experienced) human, however, our work takes one more

step towards completing the loop for automatic program rewriting and design space

exploration: providing a versatile framework for evaluating high-level concurrent

programs through simulation tracing and trace analysis.

Profiling is especially beneficial in applications where design decisions cannot be

statically evaluated. Difficulties arise when a particular program transformation is

non-obvious (perhaps due to complex interactions or timing), dependent on input

data and characteristics, or involves some tradeoff between metrics. Profiling sim-

ulation traces of concurrent programs can give a designer or compiler an idea of the

relative impact of a transformation, and most importantly, significantly prune the

space of optimizing transformations to apply. Without profile-directed optimiza-

tion, designers are left to guess or exhaustively explore innumerable variations of a

design. We have shown in Chapter 4 how even simple transformations commonly

used in asynchronous circuits can benefit from trace analyses. Not only is trace

analysis useful for assisting human-interactive design iterations, it is necessary for

automating high-level optimizations in future asynchronous design tools.
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Our contribution towards the effort of automating high-level program rewriting

and design space exploration consists of an asynchronous circuit compiler, simula-

tor, and trace analysis framework, described in Chapter 3. Our analysis framework

includes a Scheme environment that allows users to interactively mine detailed sim-

ulation traces for data that measures the impact of program transformations on

performance (or other metric). The framework is built upon a library of primitive

procedures (API) for working with the compiler’s hierarchical object files and sim-

ulator’s trace files. We have also developed a library of analysis procedures based

on critical paths and path statistics, however, developers are free (and encouraged)

to develop custom analysis packages using the provided extensible framework.

Our trace analysis infrastructure has been shown to be helpful in evaluating

asynchronous circuits at a high-level of abstraction, which helps designers write

more structurally optimized, high-level specifications. The implementation de-

scribed herein is a prototype fragment for the development of future asynchronous

design tools. Once static analysis and program rewriting are supported in the

framework, and a design space exploration engine leverages the capabilities of

profile-guided transformation and optimization, will we see a truly powerful and

intelligent asynchronous circuit design compilers.
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EPILOGUE

HAL: “Look, Dave, I can see you’re really upset about this. I honestly
think you ought to sit down calmly, take a stress pill, and think things
over...”

HAL: “I know I’ve made some very poor decisions recently, but I can
give you my complete assurance that my work will be back to normal.
I’ve still got the greatest enthusiasm and confidence in the mission.
And I want to help you.”

from 2001: A Space Odyssey,
by Arthur C. Clarke (1917–2008)

In his final year of graduate school, the author’s dissertation writing was in-

terrupted when he joined Achronix Semiconductor Corporation, an Asynchronous

FPGA startup company founded by his academic siblings and advisor, to aid in

the verification and completion of their first commercial chip. The dissertation

was finished in the Spring of 2008 and defended on May 12th, 2008.

Upon completion of this dissertation, the author resumed his duties at Achronix

where some of his asynchronous circuit tools are used for designing and simulating

asynchronous circuits. All of the tools he has developed (HACKT) have been

released under an open source license.
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APPENDIX A

CHP QUICK REFERENCE

The CHP notation we use is based on Hoare’s CSP [25]. A full description of

CHP and its semantics can be found in [44]. What follows is a short and informal

description.

• Assignment: a := b. This statement means “assign the value of b to a.” We

also write a↑ for a := true, and a↓ for a := false.

• Selection: [G1 → S1 [] ... [] Gn → Sn], where Gi ’s are boolean expressions

(guards) and Si ’s are program parts. The execution of this command cor-

responds to waiting until one of the guards is true, and then executing one

of the statements with a true guard. The notation [G] is short-hand for

[G → skip], and denotes waiting for the predicate G to become true. If the

guards are not mutually exclusive, we use the vertical bar “|” instead of “[].”

• Repetition: *[G1 → S1 [] ... [] Gn → Sn]. The execution of this command

corresponds to choosing one of the true guards and executing the correspond-

ing statement, repeating this until all guards evaluate to false. The notation

*[S] is short-hand for *[true → S].

• Send: X !e means send the value of e over channel X .

• Receive: Y ?v means receive a value over channel Y and store it in variable

v .

• Probe: The boolean expression X is true iff a communication over channel

X can complete without suspending.

• Sequential Composition: S ;T

• Parallel Composition: S ‖ T or S ,T .
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• Simultaneous Composition: S •T both S and T are communication actions

and they complete simultaneously.
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APPENDIX B

CHP PROCESS LIBRARY

B.1 Buffers

Program B.1: bool-buf CHP process

defproc bool buf (chan?(bool) L; chan!(bool) R) {
bool x;
chp {

∗[L?(x); R!(x)]
}
}

Program B.2: bool-buf-init CHP process

template <pbool B>
defproc bool buf init (chan?(bool) L; chan!(bool) R) {
bool x;
chp {

x:=B;
∗[R!(x); L?(x)]

}
}

Program B.3: bool-peekbuf CHP process

defproc bool peekbuf(chan?(bool) L; chan!(bool) R) {
bool x;
chp {
∗[ L#(x); L?, R!(x) ]
}
}

B.2 Functions

Program B.4: bool-and CHP process

template <pint N>
defproc bool and(chan?(bool) A[N]; chan!(bool) O) {
bool a[N];
chp {

∗[{, i :N: A[i ]?(a[ i ])}; O!((&&:i:N: a[i ]))]
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}
}

Program B.5: bool-table CHP process

template <pint N; pbool V[N]>
defproc bool lookup table(chan?(int) A; chan!(bool) D) {
int a;
chp {
∗[ A?(a); D!(V[a]) ]
}
}

B.3 Environments

Program B.6: bool-sink CHP process

defproc bool sink(chan?(bool) B) {
chp {

∗[ B? ]
}
}

Program B.7: bool-source CHP process

template <><pint N; pbool B[N]>
defproc bool source(chan!(bool) S) {
chp {

∗[ {; i :N: S!(B[i ]) } ]
}
}

B.4 Flow Control

Program B.8: bool-copy CHP process

template <pint N>
defproc bool copy (chan?(bool) A; chan!(bool) O[N]) {
bool a;
chp {

∗[ A?(a); {, i :N: O[i ]!( a) } ]
}
}
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Program B.9: bool-merge CHP process

template <pint N>
defproc bool merge(chan?(int) C; chan?(bool) I[N]; chan!(bool) O) {
int c;
bool x;
chp {
∗[ C?(c);

I [c ]?(x);
O!(x)

]
}
}

Program B.10: bool-split CHP process

template <pint N>
defproc bool split (chan?(int) C; chan?(bool) I; chan!(bool) O[N]) {
int c;
bool x;
chp {
∗[ C?(c),I?(x);

O[c ]!(x)
]
}
}

B.5 Alternators

Program B.11: bool-split-alternator CHP process

template <pint N>
defproc bool split alternator(chan?(bool) I; chan!(bool) O[N]) {
bool v[N];
chp {

∗[ {; i :N: I?(v[ i ]); O[i ]!( v[ i ]) } ]
}
}

Program B.12: bool-merge-alternator CHP process

template <pint N>
defproc bool merge alternator(chan?(bool) I[N]; chan!(bool) O) {
bool v[N];
chp {

∗[ {; i :N: I [ i ]?(v[ i ]); O!(v[i ]) } ]
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}
}

Program B.13: bool-parallel-fifo CHP process

template <pint N>
defproc bool parallel fifo (chan?(bool) I; chan!(bool) O) {
chan(bool) M[N];
bool split alternator <N> s(I, M);
bool merge alternator<N> m(M, O);
}
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APPENDIX C

SCHEME UTILITY LIBRARY

Randall Munroe, http://www.xkcd.com/224/

This appendix lists some common procedures used over the course analysis of

development. Many are standard scheme library procedures. All of the procedures

listed here are generic, that is, they are not specific to our own work. We provide

the source for procedures that we defined.

C.1 Queues

Standard queue operations are provided by the (ice-9 q) Scheme module. We

use the following functions in our libraries:

make -q q-empty? q-front q-rear q-push! q-pop!

C.2 Algorithms

We frequently used the following algorithms and higher-order procedures in our
libraries:

for -each map filter partition find find -tail any

(define (forward -accumulate binop init lst)

(if (null? lst) init

(forward -accumulate binop

(binop (car lst) init) (cdr lst ))))

(define accumulate forward -accumulate)
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(define (reverse -accumulate binop init lst)

(if (null? lst) init

(binop (car lst)

(reverse -accumulate binop init (cdr lst )))))

(define (list -flatten lstlst)

"Converts a list -of-lists into a single flat list."

(reverse -accumulate append ’() lstlst ))

(define (list -flatten -reverse lstlst)

; Converts a list -of-lists into a single

; flat list (reverse -constructed )."

(accumulate append ’() lstlst ))

(define (filter -split pred? lst)

; Partitions a list into a pair of lists , the first

; of which satisfied the predicate , the second of

; which failed the predicate.

; NOTE: result of partition reverses list order.

(receive (sat unsat)

(partition pred? lst)

(cons sat unsat )))

(define (find -assoc -ref alst key)

; Finds the key -value *pair* in an associative list

; using equal?, given a key.

; In contrast , assoc -ref returns only the value.

(find (lambda (x) (equal? (car x) key)) alst))

(define (iterate -template prod op index inc term?)

; Iteration template , where @var{prod} is a

; cumulative value (may be object), @var{op} is

; the combining function operating on

; (@var{index}, @var{prod}), @var{index} is a

; counter , @var{inc} is an incrementing procedure ,

; and @var{term?} is a termination predicate.

(if (term? index) prod

(iterate -template

(op index prod) op (inc index) inc term ?)))

(define (iterate -default prod op index limit)

; Iterate from @var{index} up to @{limit},

; incrementing.

(iterate -template prod op index 1+

(lambda (c) (> c limit ))))
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(define (iterate -reverse -default prod op index limit)

; Iterate from @var{index} down to

; @{limit}, decrementing.

(iterate -template prod op index 1-

(lambda (c) (< c limit ))))

C.3 Red-black Trees

All of our associative and ordered maps use red-black trees for their self-balancing

properties. Their description can be found in any standard text data structures.

We only name the interface functions here for brevity.

<rb-tree> [Class]

Red-black tree data structure. Each tree uses two comparator functors,

one for ordering, one for equality.

(define (rb-tree? t) (is-a? t <rb-tree >))

<rb-tree-node> [Class]

Tree node, which contains a key-value pair.

(make-rb-tree key=? key<? ) [Procedure]

Contruct an empty tree.

(rb-tree/insert! tree key value ) [Procedure]

Insert value associated with key.

(rb-tree/insert-if-new! tree key value ) [Procedure]

Only insert value if key didn’t not exist before.
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(rb-tree/delete! tree key ) [Procedure]

(rb-tree/lookup-key tree key default ) [Procedure]

(rb-tree/lookup tree key default ) [Procedure]

(rb-tree/lookup-pair tree key default ) [Procedure]

(rb-tree/lookup-mutate! tree key proc-1 default ) [Procedure]

(rb-tree/copy tree ) [Procedure]

(rb-tree/height tree ) [Procedure]

(rb-tree/size tree ) [Procedure]

(rb-tree/empty? tree ) [Procedure]
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(rb-tree/equal? x y value=? ) [Procedure]

(rb-tree/for-each pair-proc tree ) [Procedure]

(rb-tree/merge tree1 tree2 combine-value ) [Procedure]

(rb-tree/intersect tree1 tree2 combine-value ) [Procedure]

(rb-tree/map-pairs tree pair-proc ) [Procedure]

(rb-tree->stream tree ) [Procedure]

(rb-tree/key-list tree ) [Procedure]

(rb-tree/value-list tree ) [Procedure]

(rb-tree/min-key tree default ) [Procedure]
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(rb-tree/min-value tree default ) [Procedure]

(rb-tree/min-pair tree ) [Procedure]

Procedures for max are analogous to those of min.

(rb-tree/increment! tree key ) [Procedure]

Increment counter by 1 or initialize to 1 if doesn’t already exist.

We also provide interfaces to unordered associative lists (consisting of key-value

pairs).

(alist->rb-tree alist key=? key<? ) [Procedure]

(rb-tree->alist tree ) [Procedure]

C.4 Streams

The following stream procedures are provided by the (ice-9 streams) module:

make -stream stream -car stream -cdr stream -null?

list ->stream stream ->list stream ->reversed -list

vector ->stream stream ->vector

stream -fold stream -for -each stream -map

We provide the remaining stream procedures:

(define the -empty -stream ’())

(define (cons -stream h t) (delay (cons h t)))

138



(define (nth -stream n s)

; References the Nth element of the stream.

(if (= n 0) (stream -car s)

(nth -stream (- n 1) (stream -cdr s))))

(define stream -ref nth -stream)

(define (stream -filter pred? stream)

; "Like the filter algorithm , but operating

; on a stream instead of a list.

(cond ((stream -null? stream)

(delay the -empty -stream ))

((pred? (stream -car stream ))

(cons -stream (stream -car stream)

(stream -filter pred?

(stream -cdr stream ))))

(else (stream -filter pred?

(stream -cdr stream )))))

(define (stream -filter -split pred? stream)

; partitions into two streams using predicate

(if (stream -null? stream)

(cons (delay the -empty -stream)

(delay the -empty -stream ))

(let ((head (stream -car stream ))

(rem (stream -filter -split pred?

(stream -cdr stream ))))

(if (pred? head)

(cons (cons -stream head (car rem)) (cdr rem))

(cons (car rem) (cons -stream head (cdr rem ))))

)))

(define (stream -start pred? stream)

; Truncates the stream up to the first element

; that satisfies the predicate.

(cond ((stream -null? stream)

(delay the -empty -stream ))

((pred? (stream -car stream )) stream)

(else (stream -start pred? (stream -cdr stream )))

))

(define (stream -stop pred? stream)

; Truncates the stream after the first element

; that satisfies the predicate.

(cond ((stream -null? stream)

(delay the -empty -stream ))
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((pred? (stream -car stream ))

(delay the -empty -stream ))

(else (cons -stream (stream -car stream)

(stream -stop pred? (stream -cdr stream ))))

))

(define (stream -crop p1 p2 stream)

; Truncates the stream until the first predicate

; is satisfied , then truncates the stream after

; the second predicate is satisfied.

(stream -stop p2 (stream -start p1 stream )))

(define (stream -accumulate op initial stream)

; the accumulate algorithm for streams

(if (stream -null? stream) initial

(op (stream -car stream)

(stream -accumulate op initial

(stream -cdr stream )))))

(define (stream -concat s1 s2)

; Concatenates two streams , by exhausting the

; first stream first.

(if (stream -null? s1) s2

(cons -stream (stream -car s1)

(stream -concat (stream -cdr s1) s2))))

(define (stream -flatten strstr)

; Flattens a stream of streams sequentially

; into a single concatenated stream.

(stream -accumulate stream -concat

the -empty -stream strstr ))

(define (stream -of-lists ->stream strlst)

; Flattens a stream of lists into a

; single concatenated stream.

(stream -accumulate (lambda (x y)

(stream -concat (list ->stream x) y))

(delay the -empty -stream) strlst ))

; finite stream of integers

(define (enumerate -interval -stream low high)

; Generate a stream of integers from [low ,high].

(iterate -reverse -default (delay the -empty -stream)

cons -stream high low))
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; finite stream of integers , decreasing order

(define (enumerate -interval -reverse -stream low high)

; Generate a stream of integers from [high ,low].

(iterate -default (delay the -empty -stream)

cons -stream low high))

141



APPENDIX D

HAC OBJECT FILE API

This appendix lists many of the Scheme functions that operate on a HAC

object file to extract information from the hierarchical intermediate representation.

Functions prefixed with ‘hac:’ are primitives implemented in C++.

(hac:objdump ) [Procedure]

print textual representation of entire object file.

(hac:parse-reference str ) [Procedure]

Translates string str (as it would appear in source) to a global instance

reference handle, and returns the handle.

(hac:lookup-reference-aliases ref ) [Procedure]

Return a list of all equivalent names of instance reference ref.

(hac:valid-process-id? id ) [Procedure]

Return true if id is a valid process instance number.

(hac:reference-type ref ) [Procedure]

Returns a handle to the type associated with instance ref.

(reference-equal? r1 r2 ) [Procedure]

Return true if references r1 and r2 refer to the same instance.

(process-id->string pid ) [Procedure]

Return a string of the canonical instance name refenced by global pro-

cess number pid.
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APPENDIX E

HAC CHP SIMULATOR STATE API

E.1 Event retrieval

Basic event lookup only requires a global event index, eid.

(hac:chpsim-get-event eid ) [Procedure]

Returns a pair, (eid . #<chpsim-event>). The event object (at

cdr) does not encode its own index number.

We use the following procedure aliases for clarity.

(define static -event -node -index car)

(define static -event -raw -entry cdr)

E.2 Event predicates

For the following primitive predicate functions, parameter ev is a chpsim event

object in Scheme, #<chpsim-event>.

(hac:chpsim-event-trivial? ev ) [Procedure]

Returns true if event has no real action, e.g. concurrent forks, concur-

rent joins, end-of-selections.

(hac:chpsim-event-wait? ev ) [Procedure]

True if event is a condition wait.

(hac:chpsim-event-assign? ev ) [Procedure]

True if event is a value assignment, or x := y in CHP.
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(hac:chpsim-event-send? ev ) [Procedure]

True if event is a channel send.

(hac:chpsim-event-receive? ev ) [Procedure]

True if event is a channel receive.

(hac:chpsim-event-peek? ev ) [Procedure]

True if event is a channel peek.

(hac:chpsim-event-fork? ev ) [Procedure]

True if event is a channel fork.

(hac:chpsim-event-join? ev ) [Procedure]

True if event is a channel join.

(hac:chpsim-event-select? ev ) [Procedure]

True if event is a selection (choice), determinstic or nondeterministic,

but excludes while-do branches.

(hac:chpsim-event-select-det? ev ) [Procedure]

True if event is a deterministic selection.

(hac:chpsim-event-select-nondet? ev ) [Procedure]

True if event is a nondeterministic selection.

(hac:chpsim-event-branch? ev ) [Procedure]

True if event is any selection or while-do branch.

(hac:chpsim-event-while-do? ev ) [Procedure]

True if event is while-do branch.
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E.3 Event properties

(hac:chpsim-event-process-id ev ) [Procedure]

Returns the global process index to which the event belongs.

(hac:chpsim-event-delay ev ) [Procedure]

Returns the time delay associated with the event.

(hac:chpsim-event-num-predecessors ev ) [Procedure]

Returns the number of predecessors that must arrive before this event

may be checked for execution. Only concurrent join events have more

than one required predecessor.

(hac:chpsim-event-num-successors ev ) [Procedure]

Returns the number of successors (outgoing edges) that may follow this

event. For concurrent forks, every successor is followed; for selections,

only one successor branch is taken.

(hac:chpsim-event-successors ev ) [Procedure]

Returns the list of successor events that may follow this event.

(hac:chpsim-event-source ev ) [Procedure]

Print the full context of the CHP source that produced this event node.

(hac:chpsim-event-may-block-deps-internal ev ) [Procedure]

Internal function. Produces a set of instance of references that this

event may depend on to unblock; i.e. instances in this set are sub-

scribed upon blocking.
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E.4 Pre-computed static data

chpsim-num-events [Variable]

The number of events in the whole program, allocated by the simulator.

all-static-events-stream [Variable]

The set of all global events in the whole program. Defining as a stream

leverages lazy evaluation and memoization, i.e., it is computed and

cached upon first reference. The stream can be fed to arbitrary func-

tions and filters for querying. (Section 3.4)

E.5 Static analysis routines

The following procedures are non-primitive routines defined in Scheme. We include

the procedure source for some of them.

(chpsim-event-may-block-deps ev ) [Procedure]

Returns the set of block dependencies in a more meaningful structure,

used with hac:chpsim-event-may-block-deps-internal.

The following procedure filters out a stream of events given an predicate (ex-
pects an event object). estrm can be all-static-events-stream or any subset thereof.

Program E.1: chpsim-filter-static-events procedure

(define (chpsim -filter -static -events pred? estrm)

(stream -filter

(lambda (e) (pred? (static -event -raw -entry e)))

estrm))

The next variation expects predicates that operate on (index,event) pairs:

Program E.2: chpsim-filter-static-events-indexed procedure

(define (chpsim -filter -static -events pred? estrm)

(stream -filter (lambda (e) (pred? e))

estrm))
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E.5.1 Event graphs

This section contains listings for procedures that produce basic information about
event graph connectivity. chpsim-assoc-event-successors (Program E.3) con-
structs adjacency lists for every node in the whole program event graph. The
returned data structure is a stream of (index, list-of-index)-pairs. The result can
be used to perform static graph analysis structures, such as dominator-trees and
postdominator-trees.

Program E.3: chpsim-assoc-event-successors procedure

(define (chpsim -assoc -event -successors estrm)

(stream -map (lambda (e)

(cons (static -event -node -index e)

(hac:chpsim -event -successors

(static -event -raw -entry e))))

estrm))

Section 3.4.1 discussed the use of memoized variable computations, listed here:

Program E.4: static-event-successors-map-delayed variable

(define static -event -successors -map -delayed

(delay

(let ((succs -map (make -rb-tree = <)))

(stream -for -each

(lambda (e) (rb-tree/insert! succs -map

(successor -map -key e)

(successor -map -value -list e)))

(chpsim -assoc -event -successors

all -static -events -stream ))

succs -map)))

Program E.5: static-event-predecessors-map-delayed variable

(define static -event -predecessors -map -delayed

(delay

(let ((preds (make -rb-tree = <)))

(stream -for -each (lambda (e)

(rb-tree/insert! preds e

(make -rb-tree = <)))

chpsim -static -event -index -stream)

(rb-tree/for -each (lambda (x)

(for -each (lambda (y)

(rb-tree/lookup -mutate! preds y

(lambda (z) (rb-tree/insert! z

(successor -map -key x) ’()) z) #f))

(successor -map -value -list x)))
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(force static -event -successors -map -delayed ))

preds )))

(chpsim-successor-lists->histogram succ-list ) [Procedure]

Constructs a zero-initialized histogram from a list of successor-adjacency

lists. This is often called prior to accumulating statistics over successors

taken. (Program E.6)

Program E.6: chpsim-successor-lists->histogram variable

(define (chpsim -successor -lists ->histogram succ -list)

(let ((ret -histo (make -rb-tree = <)))

(map (lambda (x)

(rb-tree/insert! ret -histo (car x)

(let ((sub -histo (make -rb-tree = <)))

(for -each (lambda (y)

(rb-tree/insert! sub -histo y 0)) (cdr x))

sub -histo )))

succ -list)

ret -histo))

Program E.7: static-events-with-multiple-entries-delayed variable

(define static -events -with -multiple -entries -delayed

(delay

(let ((ret -map (make -rb-tree = <))

(preds (force

static -event -predecessors -map -delayed )))

(stream -for -each (lambda (e)

(rb-tree/insert! ret -map

(static -event -node -index e) ’()))

(stream -filter (lambda (x)

(let ((i (static -event -node -index x))

(e (static -event -raw -entry x)))

(> (rb-tree/size

(rb-tree/lookup preds i #f))

(hac:chpsim -event -num -predecessors e))))

all -static -events -stream ))

ret -map)))
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E.5.2 Graph traversal

The following function performs a predicated depth-first traversal over the whole
program event graph. A visited-set is maintained to ensure that no event is more
than once. The function expects a procedure object, thunk, and an event predicate,
pred?. (Discussed in Section 3.4.2)

Program E.8: static-events-depth-first-walk-predicated procedure

(define (static -events -depth -first -walk -predicated

thunk pred?)

(let (( visited (make -rb-tree = <))

(succs -map (force

static -event -successors -map -delayed )))

(let loop ((n root -event -id))

(if (not (rb-tree/lookup -key visited n #f))

(begin

(rb-tree/insert! visited n ’())

(thunk n)

(if (pred? n)

(for -each (lambda (s) (loop s))

(rb-tree/lookup succs -map n #f))))

))))

The following depth-first traversal is written iteratively to take advantage of

proper tail recursion, which works for any graph in a bounded stack space. This

method is generally preferred where there are extremely long loops in the event

graph. The algorithm works by passing and manipulating a two-level worklist of

nodes to visit, which represents the execution stack in a recursive implementation.

The ‘breadcrumbs’ trail represents the current stack, and is actually redundant

with the two-level worklist. thunk-node is a procedure to execute upon visiting

each node for the first time, and thunk-back is a procedure to execute upon

discovering a back edge. The running time for this algorithm is actually O(n2)

in the worst case because of the linear search through the ‘breadcrumbs’ stack to

detect cycle-forming back edges.

Program E.9: static-events-depth-first-walk-iterative procedure

(define (static -events -depth -first -walk -iterative

thunk -node thunk -back)
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(let (( visited (make -vector chpsim -num -events #f))

(succs -map (force

static -event -successors -map -delayed )))

(let loop (( breadcrumbs ’())

(worklist (list (list root -event -id))))

(if (not (null? worklist ))

(let ((l (car worklist ))

(r (cdr worklist )))

(if (null? l)

; tail call , remove last predecessor

(if (not (null? r))

(loop (cdr breadcrumbs)

(cons (cdar r) (cdr r))))

; else outgoing edge in last list

(let ((n (car l)))

(if (vector -ref visited n) (begin

; then detect cycle

(if (any (lambda (x) (= x n))

breadcrumbs)

(thunk -back (cons

(caadr worklist) n)))

(loop breadcrumbs (cons (cdr l)

(cdr worklist ))))

; else not already visited

(begin

(vector -set! visited n #t)

(thunk -node n)

(loop (cons n breadcrumbs)

(cons (rb-tree/lookup

succs -map n #f)

worklist ))

)))))))))

E.5.3 Event loops

The following procedure finds all loop back edges in forever-loops and do-while
loops (Section 3.4.1):

Program E.10: static-loop-bound-events-delayed variable

(define static -loop -bound -events -delayed

(delay

(let ((succs -map (force
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static -event -successors -map -delayed ))

(loop -backs (make -rb-tree = <))

(loop -heads (make -rb-tree = <)))

(static -events -depth -first -walk -iterative

(lambda (n) #f) ; do nothing

(lambda (p)

(let ((n (car p)) (s (cdr p)))

(rb-tree/insert! loop -backs n s)

(rb-tree/insert! loop -heads s n)

)))

(cons loop -heads loop -backs ))))

The following delayed evaluation finds all back edges of only do-while loops in
a single pass over all static events. The result is a forward mapping and reverse
mapping of back edges to do-while events.

Program E.11: static-do-while-bound-events-delayed delayed variable

(define static -do-while -bound -events -delayed

(delay (let ((succs -map (force

static -event -successors -map -delayed ))

(do-while -backs (make -rb-tree = <))

(do-while -heads (make -rb-tree = <)))

(stream -for -each (lambda (ev)

(let* ((n (static -event -node -index ev))

(this -succs (rb-tree/lookup

succs -map n #f)))

(for -each

(lambda (s)

(if (hac:chpsim -event -do-while?

(static -event -raw -entry

(hac:chpsim -get -event s)))

(begin

; invariant: head -tails are 1-1 mapping

(rb-tree/insert! do-while -backs n s)

(rb-tree/insert! do-while -heads s n))))

this -succs )))

all -static -events -stream)

(cons do-while -heads do-while -backs ))))

The following procedure just returns a filtered stream of do-while selection
events.

Program E.12: static-do-while-events-delayed variable

(define static -do-while -events -delayed

(delay (let ((do-whiles (make -rb-tree = <)))

(stream -for -each
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(lambda (n)

(let ((e (static -event -raw -entry n)))

(if (hac:chpsim -event -do-while? e)

(rb-tree/insert! do-whiles

(static -event -node -index n) ’()))))

all -static -events -stream)

do-whiles )))

E.5.4 Selection events

Branch heads and tails can be found with the following evaluations (from Sec-
tion 3.4.1):

Program E.13: static-branch-bound-events-delayed variable

(define static -branch -bound -events -delayed

(delay (let ((preds -map (force

static -event -predecessors -map -delayed ))

(branch -stack (make -q))

(branch -heads (make -rb-tree = <))

(branch -tails (make -rb-tree = <)))

(static -events -depth -first -walk

(lambda (n)

(let ((e (static -event -raw -entry

(hac:chpsim -get -event n))))

(cond ((hac:chpsim -event -branch? e)

(q-push! branch -stack n))

((and (> (rb-tree/size (rb-tree/lookup

preds -map n #f)) 1)

(= (hac:chpsim -event -num -predecessors

e) 1)

(not (q-empty? branch -stack))

(not (hac:chpsim -event -do-while? e)))

(let ((bh (q-pop! branch -stack )))

(rb-tree/insert! branch -heads bh n)

(rb-tree/insert! branch -tails n bh))

)))))

(cons branch -heads branch -tails ))))
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E.5.5 Concurrent sections

Loop head and tail pairs can be found with the following evaluations (from Sec-
tion 3.4.1):

Program E.14: static-fork-join-events-delayed variable definition

(define static -fork -join -events -delayed

(delay

(let ((preds -map (force

static -event -predecessors -map -delayed ))

(fork -stack (make -q))

(fork -heads (make -rb-tree = <))

(fork -joins (make -rb-tree = <)))

(static -events -depth -first -walk

(lambda (n)

(let ((e (static -event -raw -entry

(hac:chpsim -get -event n))))

(cond ((hac:chpsim -event -fork? e)

(q-push! fork -stack n))

((hac:chpsim -event -join? e)

(let ((jh (q-pop! fork -stack )))

(rb-tree/insert! fork -heads jh n)

(rb-tree/insert! fork -joins n jh)

))

))))

(cons fork -heads fork -joins ))))
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APPENDIX F

HAC SIMULATOR TRACE API

Many of the trace file functions are discussed in Section 3.5.

F.1 Primitives

Primitive trace file operations are all implemented in C++, but exported into the

Scheme environment as procedures.

(hac:dump-trace filename ) [Procedure]

Opens a trace file and prints a textual dump.

F.1.1 Event trace access

(hac:open-chpsim-trace-accessor filename ) [Procedure]

Return a handle object for a trace file in random-access mode.

(hac:open-chpsim-trace filename ) [Procedure]

Return a handle object for the named trace file in forward mode. This

exists for efficiency reasons.

(hac:open-chpsim-trace-reverse filename ) [Procedure]

Return a handle object for a trace file in reverse mode. This exists for

efficiency reasons.

(hac:chpsim-trace? trf ) [Procedure]

Return true if object is a forward mode trace file handle.
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(hac:chpsim-trace-reverse? trf ) [Procedure]

Return true if object is a reverse mode trace file handle.

(hac:chpsim-trace-accessor? trf ) [Procedure]

Return true if object is a random-access mode trace file handle.

(hac:chpsim-trace-valid? trf ) [Procedure]

Return true if forward mode trace file handle is in valid state.

(hac:chpsim-trace-reverse-valid? trf ) [Procedure]

Return true if reverse mode trace file handle is in valid state.

(hac:chpsim-trace-num-entries trf ) [Procedure]

Returns the number of events logged in the trace file. trf can be a

forward or reverse mode trace handle object.

(hac:current-trace-entry trf ) [Procedure]

Returns a tuple representing an entry in the event trace: trace index,

timestamp, static event id, event-cause id. trf is a forward-mode trace

file handle. Calling this also causes the event iterator to advance one

position. The end-of-stream is signaled with a null object.

(hac:current-trace-reverse-entry trf ) [Procedure]

Returns a tuple representing an entry in the event trace. trf is a reverse-

mode trace file handle. Calling this also causes the event iterator to

advance (retreat) one position.

(hac:lookup-trace-entry trf ind ) [Procedure]

Returns a tuple representing an entry in the event trace, indexed ind.

trf is a random-access mode trace file handle.
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F.1.2 State trace access

The trail of variable value changes is kept separately from the event trace in the

trace file. It is accessed with the following set of procedures.

(hac:open-chpsim-state-trace filename ) [Procedure]

Opens the state change portion of the trace file, returns a handle object.

(hac:chpsim-state-trace? trf ) [Procedure]

Return true if object is a value-trace trace file handle.

(hac:chpsim-state-trace-valid? trf ) [Procedure]

Return true if value-state trace file handle is in valid state.

(hac:current-state-trace-entry trf ) [Procedure]

Returns a tuple representing all variables that were changed by a single

event: trace index, changed variables with new values. trf is value-trace

file handle. Calling this also causes the event iterator to advance one

position.

F.2 Procedures

F.2.1 Trace file operations

; Produces a stream of event trace entries

; in forward order.

; trace -stream is a forward -mode trace handle.

(define -public (make -chpsim -trace -stream trace -stream)

(make -stream (lambda (s)

(let ((p (hac:current -trace -entry s)))

(if (null? p) ’() (cons p s))))

trace -stream ))
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; Produces a stream of event trace entries

; in reverse order.

; trace -stream is a reverse -mode trace handle.

(define -public (make -chpsim -trace -reverse -stream

trace -stream)

(make -stream (lambda (s)

(let ((p (hac:current -trace -reverse -entry s)))

(if (null? p) ’() (cons p s))))

trace -stream ))

; Produces a stream of value -change entries.

(define -public (make -chpsim -state -trace -stream

trace -stream)

(make -stream (lambda (s)

(let ((p (hac:current -state -trace -entry s)))

(if (null? p) ’() (cons p s))))

trace -stream ))

For convenience, the following procedures just open named trace files and pro-
duce event and state streams:

(define -public (open -chpsim -trace -stream tf)

(make -chpsim -trace -stream

(hac:open -chpsim -trace tf)))

(define -public (open -chpsim -trace -reverse -stream tf)

(make -chpsim -trace -reverse -stream

(hac:open -chpsim -trace -reverse tf)))

(define -public (open -chpsim -state -trace -stream tf)

(make -chpsim -state -trace -stream

(hac:open -chpsim -state -trace tf)))

For clarity, the following structure member accessors are provided:

; event trace index

(define -public (chpsim -trace -entry -index e)

(car e))

; event timestamp

(define -public (chpsim -trace -entry -time e)

(cadr e))

; static global event index

(define -public (chpsim -trace -entry -event e)

(caddr e))

; critical event (trace index)

(define -public (chpsim -trace -entry -critical e)

(cdddr e))
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F.2.2 State change traces

The following procedures access fields of the state-change trace structures. The

set of changed variables (and their values) are arranged by type. Some of these

procedures are described in Section 3.5.3.

; Extracts the state -trace entry ’s event index.

(define -public (chpsim -state -trace -entry -index s)

(car s))

; Extract value changes of a certain type (tag).

(define -public (chpsim -state -trace -entry -subset s tag)

(list -ref s (1+ (type -tag ->offset tag ))))

; Extracts modified bool variables from state -trace.

(define -public (chpsim -state -trace -entry -bools s)

(chpsim -state -trace -entry -subset s ’bool))

(define -public (chpsim -state -trace -entry -ints s)

(chpsim -state -trace -entry -subset s ’int))

(define -public (chpsim -state -trace -entry -enums s)

(chpsim -state -trace -entry -subset s ’enum))

(define -public (chpsim -state -trace -entry -channels s)

(chpsim -state -trace -entry -subset s ’channel ))

Given a complete history of all value changes, we can focus on any single

variable.

Program F.1: chpsim-state-trace-filter-reference: Procedure to filter a
state-change stream with only events that affect a single variable (type, index)
pair

(define -public (chpsim -state -trace -filter -reference

s rpair)

; Filters only state change entries that affect the

; variable referenced by rpair , a type -index pair.

(stream -filter (lambda (t)

(any (lambda (e)

(reference -equal? (car e) rpair))

(chpsim -state -trace -entry -subset t

(reference -type rpair ))))

s))

Program F.2: chpsim-state-trace-focus-reference: Procedure to focus state-
change on only the referenced variable, stripping away the unreferenced variables
that change on the same events
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; Re-structures the stream of value changes to focus

; on only the referenced variable.

(define -public (chpsim -state -trace -focus -reference

s rpair)

(stream -map (lambda (x)

(cons (chpsim -state -trace -entry -index x)

(let ((p (filter (lambda (e)

(reference -equal? (car e) rpair))

(chpsim -state -trace -entry -subset x

(reference -type rpair )))))

(if (null? p) ’() (car p)))))

s))

Program F.3: chpsim-state-trace-single-reference-values: Procedure to
strip away the variable index from a focused state-change stream, leaving only
event-index and value

; Produces a stream of (trace index , variable value)

; pairs that pertain to a single referenced variable.

(define (chpsim -state -trace -single -reference -values

s rpair)

(stream -map (lambda (e) (cons (car e) (cddr e)))

(chpsim -state -trace -focus -reference s rpair )))

F.2.3 Critical path

The following procedures are the basis for critical path analysis, described in Sec-

tion 3.6.

; (private)

; With a random -access trace file handle , return the

; trace index of the previous critical event.

(define (chpsim -trace -critical -path -iterator

rand -trace entry)

(hac:lookup -trace -entry rand -trace

(chpsim -trace -entry -critical entry )))

Program F.4: chpsim-trace-critical-path-from: Procedure for extracting a
critical path (stream) given a random-access event trace handle and a starting
event index

; Construct a critical path event stream (backwards)

; from a given trace index.
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; @var{rand -trace} is a random -access trace handle.

(define -public (chpsim -trace -critical -path -from

rand -trace ev)

(make -stream (lambda (s)

(if (null? s) ’()

(let ((ci (chpsim -trace -critical -path -iterator

rand -trace s)))

; only self -referential trace index is 0

(if (= (chpsim -state -trace -entry -index s)

(chpsim -trace -entry -index ci))

(cons s ’())

(cons s ci)))))

(hac:lookup -trace -entry rand -trace ev)))

Program F.5: chpsim-trace-critical-path: Combined procedure for opening
an event trace, and extracting the critical path, starting from the last event

; Produces a stream representation of the critical

; path starting from the last event in the named

; trace file.

(define -public (chpsim -trace -critical -path tr-name)

(chpsim -trace -critical -path -from

(hac:open -chpsim -trace -accessor tr-name)

(1- (hac:chpsim -trace -num -entries tr-name ))))

The following procedure constructs a critical event histogram from the critical

path, by counting occurrences of adjacent event pairs (i, j) in the critical event

stream where event i is critical to j. The result is a sparse, ordered tree of trees

with histogram counts.

Program F.6: make-event-adjacency-histogram: Procedure for constructing an
adjacency histogram given a stream of critical events

(define -public (make -event -adjacency -histogram

crit -stream)

(define (init -bin key)

(let ((tree (make -rb-tree = <)))

(rb-tree/insert! tree key 1)

tree))

(let ((edge -histo (make -rb-tree = <))

(crit -ev (stream -map

chpsim -trace -entry -event crit -stream )))

(stream -for -each

(lambda (event cause)
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(let ((n (rb-tree/insert -if-new! edge -histo

event (init -bin cause ))))

(if (not (unspecified? n))

; then we found previous entry

; n is a tree of \[cause , count\] pairs

(let ((c (rb-tree/insert -if-new!

n cause 1)))

(if (not (unspecified? c))

(rb-tree/lookup -mutate!

n cause 1+ #f ))))))

crit -ev

(stream -cdr crit -ev))

edge -histo))

; just an alias

(define -public make -critical -event -histogram

make -event -adjacency -histogram)

F.2.4 Branch statistics

The following procedure is used to construct a histogram of taken branches of

selections (including while-do loops) from an event trace stream. (Described in

Section 3.5.4)

Program F.7: make-select-branch-histogram: Procedure to construct a his-
togram of successors taken per branch

(define -public (make -select -branch -histogram

trace -stream)

(let* ((select -succ -lists

(chpsim -assoc -event -successors (force

static -events -selects -stream -delayed )))

(ll-histo (chpsim -successor -lists ->histogram

(stream ->list select -succ -lists )))

(sorted -assoc -pred

(let ((pred -map (make -rb-tree = <)))

(stream -for -each

(lambda (s) (rb-tree/insert!

pred -map (car s) (cdr s)))

(stream -of-lists ->stream

(chpsim -assoc -event -pred -from -succ

select -succ -lists )))
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pred -map)))

; incrementing counter

(define (count -selects x)

(let ((f (rb-tree/lookup sorted -assoc -pred

x #f)))

(if f (let ((y (rb-tree/lookup ll-histo f #f)))

(rb-tree/lookup -mutate! y x 1+ #f)))))

(stream -for -each (lambda (e)

(count -selects (chpsim -trace -entry -event e)))

trace -stream)

ll-histo))

F.2.5 Loop statistics

The following procedure is used to construct a histogram of loop iteration counts

from an event trace stream. (Described in Section 3.5.4)

Program F.8: make-loop-histogram: Procedure to construct a histogram of loop
occurrences

(define -public (make -loop -histogram

trace -stream)

(let ((loop -heads

(force static -loop -head -events -delayed ))

(loop -histo (make -rb-tree = <)))

(rb-tree/for -each (lambda (p)

(rb-tree/insert! loop -histo (car p) 0))

loop -heads)

(stream -for -each (lambda (e)

(let ((eid (chpsim -trace -entry -event e)))

(if (chpsim -event -loop -head? eid)

(rb-tree/lookup -mutate!

loop -histo eid 1+ #f))))

trace -stream)

loop -histo))

F.2.6 Channel statistics

The following procedures for analyzing channels on critical paths are introduced

in Section 3.6.2.
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make-critical-channel-event-pairs-list takes a critical event stream with

a channel index parameter and returns a list of send-receive event-pairs in the trace

that occurred on the critical path. Recall that the critical path is listed in reverse-

chronological order. The resulting stream will be in forward-chronological order.

Each list element is a list of 1 or two events. Atomic send-receive events on the

critical path are paired together, while other non-paired send-receive events are

singleton elements.

Program F.9: make-critical-channel-event-pairs-list: Procedure to fold
and filter channel events from a critical path

(define (make -critical -channel -event -pairs -list

crit -stream cid)

(let* ((cev (alist ->rb-tree (stream ->list

(stream -map (lambda (e) (cons (car e) #t))

(chpsim -find -events -involving -channel -id

cid all -static -events -stream ))) = <))

(sr-estrm (stream -filter

(lambda (e) (rb-tree/lookup cev

(chpsim -trace -entry -event e) #f))

crit -stream )))

(stream -fold (lambda (elem init)

; init will accumulate as a list

(if (null? init)

(list (list elem))

(let (( recent (car init))

(rest (cdr init )))

(if (= (length recent) 2)

; last event already paired

(cons (list elem) init)

(let* ((prev (car recent ))

(crit -prev

(chpsim -trace -entry -critical

prev )))

(if (and (= (chpsim -trace -entry -index

elem) crit -prev)

(= (1+ crit -prev)

(chpsim -trace -entry -index prev))

(not (=

(chpsim -trace -entry -event elem)

(chpsim -trace -entry -event prev)

163



)))

(cons (cons elem recent) rest) ; pair up

(cons (list elem) init )))))))

’() sr-estrm )))

filter-critical-send-receive-pairs-list filters out a list of send-receive
event pairs from the previous procedure, dropping the singleton events.

Program F.10: filter-critical-channel-event-pairs-list: Filter to keep
only paired send-receive channel events

(define (filter -critical -send -receive -pairs -list

unfiltered -list)

(filter (lambda (x) (= (length x) 2))

unfiltered -list))

make-critical-send-receive-pairs-list is just a composition of the pre-
vious two procedures, producing a list of only critical send-receive event pairs.

(define (make -critical -send -receive -pairs -list

crit -stream cid)

(filter -critical -send -receive -pairs -list

(make -critical -channel -event -pairs -list

crit -stream cid)))

count-send-receive-criticality takes a list of send-receive critical event

pairs, and returns a pair of counters, where the first value is the number of times

sender was critical, and the second value is the number of times the receiver was

more critical.

Program F.11: count-send-receive-criticality: Procedure to count occur-
rences of sender or receiver criticality

(define (count -send -receive -criticality lst)

(fold (lambda (elem init)

(let ((ev (cdr (hac:chpsim -get -event

(chpsim -trace -entry -event (car elem ))))))

; check the first element of each

; send -receive pair: which is more critical?

(cond

((hac:chpsim -event -send? ev)

(cons (1+ (car init)) (cdr init )))

((hac:chpsim -event -receive? ev)

(cons (car init) (1+ (cdr init ))))

(else init) ; doesn ’t count

)))

’(0 . 0) lst))
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The following procedure is merely a convenient composition of the above.

Program F.12: channel-send-receive-criticality: Composed procedure to
count occurrences of sender or receiver criticality

(define (channel -send -receive -criticality

crit -stream cname)

(count -send -receive -criticality

(make -critical -send -receive -pairs -list

crit -stream

(cdr (hac:parse -reference cname )))))

F.2.7 Process statistics

Program F.13: make-critical-process-histogram: Procedure to identify which
processes the critical path lies in

(define (make -critical -process -histogram crit -path)

(let ((proc -histo (make -rb-tree = <)))

(stream -for -each

(lambda (pid) (rb-tree/increment!

proc -histo pid))

(stream -map

(lambda (e)

(hac:chpsim -event -process -id

(static -event -raw -entry

(hac:chpsim -get -event

(chpsim -trace -entry -event e)))))

crit -path))

proc -histo))

Program F.14: print-named-critical-process-histogram: Print name of pro-
cess along with index and number of occurrences on the critical path from the
given histogram

(define (print -named -critical -process -histogram

proc -histo)

(rb-tree/for -each

(lambda (p)

(display (process -id->string (car p)))

(display ": ")

(display p)

(newline ))

proc -histo))
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