
EVERYTHING I NEEDED TO KNOW ABOUT

ASYNCHRONOUS REGISTER FILES, I LEARNED IN

KINDERGARTEN

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Jedi Master

by

David Fang

January 2004

c© 2004 David Fang
ALL RIGHTS RESERVED

ABSTRACT

At the heart of practically every modern microprocessor core sits some form of
register file, whose purpose is to hold and supply intermediate results of computa-
tions to other computation units. As register files grow in size and in the number
of ports to support increasing instruction-level parallelism (ILP), it becomes ex-
tremely difficult to meet timing requirements in clocked designs, and the energy
consumed by accesses increases significantly. Asynchronous microprocessors share
many of the same design issues, however, we have at our disposal a different family
of techniques due to the robust and modular nature of self-timed design.

Starting with a sequential specification of a typical asynchronous register file,
we decompose the specification into fine-grain parallel processes for the core, bypass
and control that implement the specified register file. To improve the throughput of
the core, we vertically pipeline the read and write ports into smaller blocks of data,
and we describe the locking mechanism that maintains pipelined mutual exclusion
among reads and writes. Using standard handshaking expansion templates, we
synthesize quasi-delay insensitive production rules that describe the circuits for
the pipelined core ports. This initial design serves as the basis for comparison for
the transformations presented in the remainder of the thesis.

The key contributions are described in detail throughout the remainder of the
thesis. We extend the base design to support a width-adaptive datapath repre-
sentation, which leads to significant energy reduction by conditionally communi-
cating higher significant bits of integers, with little performance degradation. We
show how the bypass can be extended to reduce core accesses with alternative im-
plementations of the hard-wired zero register and bypass-forwarding of duplicate
operands using Port Priority Selection. We show the improvement in speed and
energy gained by splitting the register core into two banks. As an alternative to
banking, which is interconnect-limited, we present the technique of nesting the reg-
ister core into non-uniform banks without increasing the interconnect requirement
to facilitate faster accesses to more frequently used registers and slower accesses
to less frequently used registers, and thus, achieve average-case improvement. We
have laid out the explored design space of register files in TSMC .18µm technology,
and present performance and energy results for all register cores simulated using
a variant of spice.

Biographical Sketch

[scrolling text, with theme music]

A seemingly long time ago in a part of the country far away...

The author graduated from Franklin Regional Senior High School in Mur-
rysville, PA with Honors with Highest Distinction in the class of 1997. He enrolled
at the California Institute of Technology in 1997, ambitiously intending to tackle
electrical engineering, physics, and a twist of applied mathematics, but only man-
aged to graduate with a Bachelor of Science in Electrical Engineering with Honors
in 2001.

The roots of his interest in asynchronous VLSI trace back to the EE/CS181abc
class he took (and endured) as an undergrad, taught by Prof. Alain Martin and
his research group members. The author received a National Defense Science
and Engineering Graduate Fellowship, sponsored by the Office of Naval Research.
Since the summer of 2001, the author has been a student of the Computer Systems
Laboratory in the Cornell Electrical and Computer Engineering Department, as
an apprentice of Jedi Prof. Rajit Manohar, a former student of Prof. Martin. The
change of climate has been likened to leaping out of the frying pan and into the
freezer.

To supplement his background in asynchronous VLSI, the author is minoring in
computer science, and maintains interest in computer architecture and compilers,
which spans the hardware and software aspects of computer engineering. Aside
from being passionate about his work, he also maintains strong interest in music
and dance — but only when time permits, of course.

Presently, he lives his life asynchronously, not conforming to any normal or
regulated sleeping schedule. He aspires to settle down in a place that’s sunnier
and warmer than Ithaca, NY someday.

iii

dedicated to Master Yoda

iv

Acknowledgments

First, I’d like to thank my advisor, Prof. Rajit Manohar, for his continuous guid-
ance, support, and his patience throughout the lifetime of this undertaking. Thanks
to my committee members, Profs. Martin Burtscher and Radu Rugina, for taking
the time to parse the entire thesis through their pipelines and provide constructive
feedback.

The experience of the Master’s project would not have been as enjoyable with-
out constant encouragement and a sense of humor from my fellow computer en-
gineers in the Computer Systems Laboratory. It is my pleasure and honor to be
in the company of “Asynchronians” John Teifel, Virantha Ekanayake, Clint Kelly,
and David Biermann.

A nod goes to an innumerable group of friends who, with some success from
time to time, have lured me away from my arduous studies to enjoy life as it should
be enjoyed. Without them, I would’ve lost my wits long ago. (No comical retorts,
please!)

Finally, the work for thesis was entirely funded by the National Defense Science
and Engineering Graduate Fellowship with sponsorship from the Office of Naval
Research. You have fed this poor hungry grad student in support of his work.
Thank you!

v

Table of Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Asynchronous Circuit Synthesis 2
1.1.2 Register File Models . 6

1.2 Overview . 7

2 Process Specification and Decomposition 10
2.1 Sequential Specification . 10
2.2 Primary Decomposition . 13
2.3 Register Core . 17
2.4 Register Bypass . 20
2.5 Register Control . 20
2.6 Summary . 21

3 Vertical Pipelining 24
3.1 Preliminary Concepts . 24
3.2 Related Work . 28
3.3 Pipeline Templates . 30
3.4 Pipelined Bypass . 30
3.5 Pipelined Mutual Exclusion: Core 31
3.6 Register Zero . 33
3.7 Summary . 34

4 Core Base Design 35
4.1 Template Handshaking Expansions 35

4.1.1 Half-Buffer vs. Full-Buffer 37
4.1.2 Core Read Port HSE . 38
4.1.3 Core Write Port HSE . 40

4.2 Floor Decomposition . 41
4.2.1 Decomposed Reading . 42
4.2.2 Decomposed Writing . 47

4.3 Production Rule Synthesis . 51
4.3.1 Core Register Cells . 51
4.3.2 Control Propagation . 52

vi

4.3.3 Data Interface Cell . 53
4.3.4 Handshake Control . 54
4.3.5 Circuit Variations and Optimizations 56

4.4 Banking . 56
4.4.1 Related Work . 57
4.4.2 Core Banking . 57
4.4.3 Bypass Banking . 59
4.4.4 Control Modifications . 60

4.5 Results . 60
4.5.1 Reading . 62
4.5.2 Writing . 63

4.6 Summary . 64

5 Width Adaptivity 65
5.1 Related Work . 65
5.2 WAD Encoding . 67
5.3 CHP Transformations . 67

5.3.1 Bypass . 68
5.3.2 Core . 68

5.4 Template Handshaking Expansions 69
5.4.1 Core Read Port HSE . 70
5.4.2 Core Write Port HSE . 71
5.4.3 HSE Summary . 71

5.5 Width-Adaptive Production Rules 72
5.5.1 WAD Control Propagation 73
5.5.2 WAD Read Handshake Control 75
5.5.3 WAD Write Handshake Control 77
5.5.4 PRS Comparison of WAD Write Ports 78

5.6 Results . 79
5.6.1 Area . 80
5.6.2 Reading . 80
5.6.3 Writing, Unconditional Write-Enable 81
5.6.4 Writing, Conditional Write-Enable 83

5.7 Summary . 84

6 Register Zero 86
6.1 Related Work . 86
6.2 Reading Register Zero . 87

6.2.1 Bypass Modifications . 87
6.2.2 Control Modifications . 87
6.2.3 Impact of Width-Adaptivity 88

6.3 Writing Register Zero . 88
6.3.1 Control Modifications . 88
6.3.2 Impact of Width-Adaptivity 89

vii

6.4 Summary . 89

7 Port Priority Selection 90
7.1 Related Work . 91
7.2 Bypass Modifications . 91
7.3 Control Modifications . 91
7.4 Summary . 93

8 Non-Uniform Control Completion 94
8.1 Register Statistics . 94
8.2 Unbalancing Completion Trees . 97
8.3 Results . 98

8.3.1 Non-WAD Reading . 98
8.3.2 Non-WAD Writing . 99
8.3.3 WAD Reading . 100
8.3.4 WAD Writing . 100

8.4 Summary . 102

9 Core Partitioning via Nesting 104
9.1 Related Work and Applications . 104
9.2 Nesting CHP Decomposition . 106

9.2.1 Unconditional Control Propagation 107
9.2.2 WAD Control Propagation 108

9.3 Handshaking Expansion Modifications 108
9.3.1 Unconditional Read Control Propagation 109
9.3.2 Unconditional Write Control Propagation 110
9.3.3 WAD Read Control Propagation 111
9.3.4 WAD Write Control Propagation 111

9.4 Floor Decomposition . 112
9.4.1 Read Data Nesting . 112
9.4.2 Non-WAD Write Data Nesting 116
9.4.3 Non-WAD Read Control Nesting 118
9.4.4 WAD Read Control Nesting 119
9.4.5 Non-WAD Write Control Nesting 121
9.4.6 WAD Write Control Nesting 122

9.5 Production Rules . 124
9.5.1 Read Data Nested Interconnect 125
9.5.2 Write Data Nested Interconnect 126
9.5.3 Read/Write Nested Data Interface 127
9.5.4 WAD Nested Read Handshake Control 128
9.5.5 Unconditional Read Control Nested Interconnect 128
9.5.6 WAD Read Control Nested Interconnect 128
9.5.7 Unconditional Write Control Nested Interconnect 130
9.5.8 WAD Write Control Nested Interconnect 130

viii

9.6 Results . 131
9.6.1 Area . 133
9.6.2 Non-WAD Reading . 134
9.6.3 Non-WAD Writing . 136
9.6.4 WAD Reading . 138
9.6.5 WAD Writing, Unconditional Outer Write-Enable 140
9.6.6 WAD Writing, Conditional Outer Write-Enable 141

9.7 Summary . 143

10 Conclusion 145
10.1 Recapitulation . 145
10.2 Choice . 147
10.3 Future Work . 147

A Summary of CHP Notation 149

B Bypass CHP 150
B.1 Base Design . 150
B.2 Vertically Pipelined . 152
B.3 Width-Adaptive . 153
B.4 Register Zero . 154
B.5 Port Priority Select . 155
B.6 Banking . 156

C Control CHP 157
C.1 Base Design . 157
C.2 Banking . 160
C.3 Register Zero . 162
C.4 Port Priority Select . 163

D Core CHP 165
D.1 Pipelined Core . 165
D.2 WAD Core . 168
D.3 Nested Core . 169
D.4 WAD Nested Core . 171

E Core HSE 173
E.1 Pipelined Core . 173
E.2 WAD Core . 174
E.3 Non-WAD Nested Core . 176
E.4 WAD Nested Core . 179

ix

F Partial HSEs of the Core 183
F.1 Non-WAD Core . 183
F.2 WAD Core . 184

F.2.1 Reading Control . 184
F.2.2 Writing Control, Unconditional Write-Enable 185
F.2.3 Writing Control, Conditional Write-Enable 186

F.3 Non-WAD Nested Core . 187
F.3.1 Modified Data Interface . 187
F.3.2 Nested Data Interconnect 188
F.3.3 Nested Control Interconnect 189

F.4 WAD Nested Core . 190
F.4.1 Reading . 190
F.4.2 Writing . 191

G Reset Convention 192
G.1 Global Reset Signals . 192
G.2 Handshake Protocol Reset State . 193

H Core PRS 195
H.1 Register Cell Array . 195
H.2 Data Nested Interconnect . 196
H.3 Control Propagation Array . 199
H.4 Control Nested Interconnect . 201
H.5 Data Interface Array . 204
H.6 Read Handshake Control . 206

H.6.1 Unconditional Read Handshake Control 206
H.6.2 WAD Read Handshake Control 207
H.6.3 Nested WAD Read Handshake Control 208
H.6.4 Read Handshake Control Termination 209

H.7 Write Handshake Control . 210
H.7.1 Unconditional Write Handshake Control 210
H.7.2 WAD Write Handshake Control, Unconditional Enable . . . 211
H.7.3 WAD Write Handshake Control, Conditional Enable 212
H.7.4 Write Handshake Control Termination 213

I Mine Eyes Have Seen The Glory 214

J Big Honkin’ Tables 215

K Top Ten Lists 233

Bibliography 234

x

List of Tables

1.1 Register file components affected by various transformations 8

4.1 Layout component dimensions . 60
4.2 Read-access performance and energy comparisons for the base de-

sign register file, for a block size of 4 bits x 32 registers 62
4.3 Read-access performance and energy comparisons for a register

bank with a block size of 4 bits x 16 registers 62
4.4 Write-access performance and energy comparisons for the base de-

sign register file, for a block size of 4 bits x 32 registers 63
4.5 Write-access performance and energy comparisons for a register

bank with a block size of 4 bits x 16 registers 63

5.1 The encoding of width-adaptive datapath (WAD) blocks 67
5.2 Read-access performance and energy comparisons for the WAD reg-

ister file, for a block size of 4 bits x 32 registers 80
5.3 Read-access performance and energy comparisons for the WAD reg-

ister file, for a block size of 4 bits x 16 registers 80
5.4 Write-access performance and energy comparisons for the WAD

register file, with the unconditional write-enable variation, for a
block size of 4 bits x 32 registers 82

5.5 Write-access performance and energy comparisons for the WAD
register file, with the unconditional write-enable variation, for a
block size of 4 bits x 16 registers 82

5.6 Write-access performance and energy comparisons for the WAD
register file, with the conditional write-enable variation, for a block
size of 4 bits x 32 registers . 83

5.7 Write-access performance and energy comparisons for the WAD
register file, with the conditional write-enable variation, for a block
size of 4 bits x 16 registers . 83

8.1 MIPS register conventions . 95
8.2 Cumulative dynamic usage frequencies of the 20 most read and

written MIPS registers . 96
8.3 Read-access performance and energy comparisons for the non-uniform

non-WAD register file with 16 registers. 99

xi

8.4 Write-access performance and energy comparisons for the non-uniform
non-WAD register file with 16 registers. 100

8.5 Read-access performance and energy comparisons for the non-uniform
WAD register file with 16 registers. 101

8.6 Write-access performance and energy comparisons for the non-uniform
WAD (unconditional write-enable) register file with 16 registers. . . 102

8.7 Write-access performance and energy comparisons for the non-uniform
WAD (conditional write-enable) register file with 16 registers. . . . 102

9.1 Read-access performance and energy comparisons for the nested
register file with 16 registers per partition. 135

9.2 Read-access performance and energy comparisons for the nested
register file with 8 registers per partition. 135

9.3 Write-access performance and energy comparisons for the nested
register file with 16 registers per partition 137

9.4 Write-access performance and energy comparisons for the nested
register file with 8 registers per partition 137

9.5 Read-access performance and energy comparisons for the WAD
nested register file with 16 registers per partition. 138

9.6 Read-access performance and energy comparisons for the WAD
nested register file with 8 registers per partition. 139

9.7 Write-access performance and energy comparisons for the WAD
nested register file with 16 registers per partition, unconditional
outer write-enable variation . 140

9.8 Write-access performance and energy comparisons for the WAD
nested register file with 8 registers per partition, unconditional
outer write-enable variation. 141

9.9 Write-access performance and energy comparisons for the WAD
nested register file with 16 registers per partition, conditional outer
write-enable variation . 142

9.10 Write-access performance and energy comparisons for the nested
register file with 8 registers per partition, conditional outer write-
enable variation. 142

J.1 Data table symbols . 216
J.2 All non-WAD read port performance and energy results 217
J.3 All WAD read port performance and energy results 218
J.4 Impact of chosen buffering on read port performance and energy . 219
J.5 Impact of width-adaptivity on half-buffer read port performance

and energy . 220
J.6 Impact of width-adaptivity on full-buffer read port performance

and energy . 220
J.7 Impact of bank size on read port performance and energy 221
J.8 Impact of bank size on read latency 222

xii

J.9 Impact of nesting on read latency 222
J.10 Impact of extending a bank with nesting on read port performance

and energy . 222
J.11 Impact of non-uniform accesses on read port performance and energy223
J.12 All non-WAD write port performance and energy results 224
J.13 All WAD-uwen write port performance and energy results 225
J.14 All WAD-cwen write port performance and energy results 226
J.15 Impact of chosen buffering on write port performance and energy . 227
J.16 Impact of width-adaptivity on half-buffer write port performance

and energy . 228
J.17 Impact of width-adaptivity on full-buffer write port performance

and energy . 229
J.18 Impact of bank size on write port performance and energy 230
J.19 Impact of bank size on write latency 231
J.20 Impact of nesting on write latency 231
J.21 Impact of extending a bank with nesting on write port performance

and energy . 231
J.22 Impact of non-uniform accesses on write port performance and energy232

xiii

List of Figures

1.1 Flow diagram of QDI synthesis . 3
1.2 Precharge half-buffer (PCHB) with active-low acknowledgments . . 5
1.3 Two equivalent implementations of a precharge full-buffer (PCFB)

with active-low acknowledgments 5
1.4 Abstract PCHB circuit template for a function with n inputs and

m output channels. 6

2.1 Register file’s channel interface with its environment 11
2.2 Schematic of the Register File process decomposition. 13
2.3 Schematic of the CORE decomposition 17
2.4 Schematic of read port . 18
2.5 Schematic of write port . 18
2.6 Schematic of the bypass decomposition 21
2.7 Schematic of the control decomposition 23

3.1 Vertically pipelined core array . 26
3.2 Synchronous or asynchronous block-aligned datapath communication 26
3.3 Synchronous parallel skewed vertical pipeline operation 27
3.4 Snapshot of vertically pipelined, block-skewed datapath communi-

cation . 27
3.5 Schematic of pipelined core reading and writing blocks 32

4.1 Precharge enable-valid full-buffer (PCEVFB) template 37
4.2 Precharge enable-valid half-buffer (PCEVHB) template 37
4.3 Examples of two-dimensional pipelining 38
4.4 Floorplan of a vertically pipelined register core block for reading

and writing . 42
4.5 Floor decomposition of a read port block, shown with channel sig-

nals and some internal signals at component boundaries 42
4.6 Floor decomposition of a PCEVFB read port 43
4.7 Floor decomposition of a PCEVHB read port 43
4.8 Floor decomposition of a write port block, shown with channel

signals and some internal signals at component boundaries 47
4.9 Floor decomposition of a PCEVFB write port 48
4.10 Floor decomposition of a PCEVHB write port 48

xiv

4.11 QDI Register core cell. Only one read and one write port are shown. 51
4.12 Pipeline-locked read control propagation. 53
4.13 Pipeline-locked write control propagation. 53
4.14 Read and write data interface for a single port of a bit line 53
4.15 Read handshake control for full-buffered unconditional control prop-

agation . 55
4.16 Read handshake control for half-buffered unconditional control prop-

agation . 55
4.17 Write handshake control for full-buffered unconditional control prop-

agation . 56
4.18 Write handshake control for half-buffered unconditional control prop-

agation . 56
4.19 Banking the register file is a common method for reducing access

energy and delay by reducing the load on bit lines 58
4.20 Block diagram of vertically pipelined, banked read and write pro-

cesses. 58
4.21 Bypass decomposition for dual-banked register core. 59

5.1 Switching activity in non-width-adaptive and width-adaptive reg-
ister files . 66

5.2 Examples of width-adaptive representation of integers 67
5.3 Block diagram of a width-adaptive register core a) read port and

b) write port . 69
5.4 Floor decomposition of a PCEVFB WAD read port 72
5.5 Floor decomposition of a PCEVHB WAD read port 72
5.6 Floor decomposition of a PCEVFB WAD write port (unconditional

write-enable) . 73
5.7 Floor decomposition of a PCEVHB WAD write port (unconditional

write-enable) . 73
5.8 Floor decomposition of a PCEVFB WAD write port (conditional

write-enable) . 73
5.9 Floor decomposition of a PCEVHB WAD write port (conditional

write-enable) . 73
5.10 WAD pipeline-locked read control propagation 74
5.11 WAD pipeline-locked write control propagation, for unconditional

write-enable . 75
5.12 WAD read handshake control, PCEVFB reshuffling 76
5.13 WAD read handshake control, PCEVHB reshuffling 76
5.14 WAD write handshake control, unconditional write-enable, PCEVFB 77
5.15 WAD write handshake control, unconditional write-enable, PCEVHB 78
5.16 WAD write handshake control, conditional write-enable, PCEVFB 78
5.17 WAD write handshake control, conditional write-enable, PCEVHB 79

xv

7.1 a) A traditional multi-ported register file may retrieve the same
register through different ports, whereas b) a PPS implementation
may reduce energy by suppressing redundant read accesses to the
core. 90

7.2 Modified read bypass decomposition for Port Priority Selection . . 92
7.3 Schematic of Control decomposition for port priority select 93

8.1 Balanced and unbalanced completion trees 97

9.1 Block diagram of vertically pipelined, and nested read and write
processes. 107

9.2 Floorplan of a nested 4-bit x 16-word pipeline block of the register
core . 113

9.3 Floor decomposition of a data-nested core read port 113
9.4 Floor decomposition of a data-nested core write port 114
9.5 Floor decomposition of a PCEVFB nested read port 114
9.6 Floor decomposition of a PCEVHB nested read port 115
9.7 Floor decomposition of a PCEVFB nested write port 117
9.8 Floor decomposition of a PCEVHB nested write port 117
9.9 Floor decomposition of a PCEVFB WAD nested read port 120
9.10 Floor decomposition of a PCEVHB WAD nested read port 120
9.11 Floor decomposition of a PCEVFB WAD nested write port, (un-

conditional outer write-enable) . 122
9.12 Floor decomposition of a PCEVHB WAD nested write port, (con-

ditional outer write-enable) . 122
9.13 Floor decomposition of a PCEVFB WAD nested write port, (con-

ditional outer write-enable) . 123
9.14 Floor decomposition of a PCEVHB WAD nested write port, (con-

ditional outer write-enable) . 124
9.15 The interconnect circuit between inner and outer register partitions

for a single nested read port . 125
9.16 The interconnect circuit between inner and outer register partitions

for a single nested write port . 126
9.17 Data interface cell for nested reading and writing 127
9.18 PCEVFB WAD nested read handshake control circuit 128
9.19 PCEVHB WAD nested read handshake control circuit 129
9.20 The control interconnect circuit between the inner and outer par-

titions’ control propagation arrays for a non-WAD nested read port 129
9.21 The control interconnect circuit between the inner and outer par-

titions’ control propagation arrays for a WAD nested read port.
Shaded circuits are modifications introduced by WAD. 130

9.22 The control interconnect circuit between inner and outer partitions’
control propagation arrays for a non-WAD nested write port 131

xvi

9.23 The control interconnect circuit between the inner and outer par-
titions’ control propagation arrays for a WAD nested write port
with an unconditional outer write-enable. The shaded circuits are
modifications introduced by WAD. 132

9.24 The control interconnect circuit between the inner and outer parti-
tions’ control propagation arrays for a WAD nested write port with
a conditional outer write-enable. The shaded circuits are modifica-
tions introduced by WAD. 132

9.25 Vertically pipelined, banked and nested read and write ports. . . . 133

xvii

List of Programs

1.1 Equivalent HSEs: precharge half-buffer (PCHB) 4
1.2 Equivalent HSEs: precharge full-buffer (PCFB) 5
1.3 HSE of a PCHB template for a function of multiple inputs and

multiple outputs . 6
2.1 CHP: register file . 11
2.2 CHP: register file with explicit bypass 12
2.3 CHP: register core . 15
2.4 CHP: register file bypass (sequential) 15
2.5 CHP: register file control . 16
2.6 CHP: core read port . 17
2.7 CHP: core write port . 18
2.8 CHP: read port demux . 19
2.9 CHP: single-register read port . 19
2.10 CHP: write port demux . 19
2.11 CHP: single-register write port . 20
2.12 CHP: register file control, after rolling back one writeback phase . . 22
3.1 CHP: template for an unpipelined process 30
3.2 CHP: template for a non-CRT vertically pipelined process 30
3.3 CHP: template for a CRT vertically pipelined process, with inde-

pendent actions . 31
3.4 CHP: template for a non-CRT vertically pipelined process, with

locking . 31
3.5 CHP: template for pipelined process with locking at the receivers . 32
3.6 CHP: template for pipelined process with locking at the sender . . . 33
4.1 Equivalent HSEs: precharge enable-valid full-buffer (PCEVFB) . . . 36
4.2 Equivalent HSEs: precharge enable-valid half-buffer (PCEVHB) . . 36
4.3 HSE: PCEVFB data-independent read port 39
4.4 HSE: PCEVFB data-independent read port 39
4.5 HSE: PCEVFB data-independent read port 39
4.6 HSE: PCEVHB data-independent read port with full-buffered data

output, and half-buffered control output 40
4.7 HSE: terminal block of read port 40
4.8 HSE: PCEVFB data-independent write port 40
4.9 HSE: PCEVFB data-independent write port 41

xviii

4.10 HSE: PCEVHB data-independent write port 41
4.11 HSE: terminal block of write port 41
4.12 HSE: the register read cell array component, set-only 43
4.13 HSE: the register read data interface with R reset 43
4.14 HSE: completion tree for Rv in read port 44
4.15 HSE: the register control propagation array (read and write) 44
4.16 HSE: completion tree for control propagation array in the read and

write port . 45
4.17 HSE: the register read handshake control (full buffer) 45
4.18 HSE: the register read handshake control (half buffer) 45
4.19 HSE: completion tree for ren signals in read port 45
4.20 HSE: the terminal block’s read handshake control 47
4.21 HSE: the register write cell array component 48
4.22 HSE: completion tree for wvc in read port 48
4.23 HSE: resetting the write validity bitline 49
4.24 HSE: the register write cell array component (set-only) 49
4.25 HSE: the register write handshake control (full buffer) 49
4.26 HSE: the register write handshake control (half buffer) 49
4.27 HSE: the terminal block’s write handshake control 50
5.1 CHP: template for a width-adaptive vertical pipeline, with indepen-

dent actions . 68
5.2 CHP: template for a width-adaptive vertically pipeline, with locking 68
5.3 HSE: PCEVFB WAD pipeline stage template with locking. 70
5.4 HSE: PCEVHB WAD pipeline stage template with locking. 70
5.5 HSE: PCEVFB WAD pipeline stage template with locking and con-

ditional internal enable. 72
9.1 CHP: template for pipelined, non-WAD, nested process with locking

at the sender . 108
9.2 CHP: template for pipelined, WAD, nested process with locking at

the sender . 109
9.3 HSE: data component of read port with nested data, after final

transformations . 116
9.4 HSE: PCEVFB control component only of the data-independent

read port with nested data . 119
9.5 HSE: PCEVFB control component of WAD read port with nested

data . 121
B.1 CHP: register file writeback bypass 150
B.2 CHP: register file read bypass . 151
B.3 CHP: pipelined register file read bypass 152
B.4 CHP: pipelined register file writeback bypass 152
B.5 CHP: WAD read bypass . 153
B.6 CHP: WAD writeback process . 153
B.7 CHP: register file read bypass with source for hard-wired zero . . . 154
B.8 CHP: read bypasses with port priority select 155

xix

B.9 CHP: register file read bypass, for a dual-banked core 156
B.10 CHP: register file writeback bypass, for dual-banked register core . 156
C.1 CHP: register bypass control for base design 158
C.2 CHP: register writeback control of base design 159
C.3 CHP: destination copy process . 159
C.4 CHP: register bypass control for dual-banked register core 160
C.5 CHP: register writeback control for a banked register core 161
C.6 CHP: register bypass control for reading 0 from the bypass 162
C.7 CHP: register writeback control . 162
C.8 CHP: priority port comparator . 163
C.9 CHP: register bypass control, with priority port select 164
D.1 CHP: unpipelined multiported register 165
D.2 CHP: pipelined, multiported register block 165
D.3 CHP: pipelined register block with locking 166
D.4 CHP: pipelined register read port with locking at the sender 166
D.5 CHP: pipelined register write port with locking at the sender 166
D.6 CHP: read port demux, with locking 167
D.7 CHP: write port demux, with locking 167
D.8 CHP: pipelined, multiported zero-register block 167
D.9 CHP: WAD read port, without locking in the termination case . . . 168
D.10 CHP: WAD register write port, without locking in the terminating

case . 168
D.11 CHP: nested partitions read, with unconditional pipeline-locked con-

trol propagation . 169
D.12 CHP: nested partition write, with unconditional pipeline-locked con-

trol propagation . 169
D.13 CHP: read and write demuxes for nested partitioning, port i 170
D.14 CHP: nested partitions read, with WAD pipeline-locked control

propagation . 171
D.15 CHP: nested partition write, with WAD pipeline-locked control prop-

agation . 172
E.1 HSE: PCEVFB WAD read port . 174
E.2 HSE: PCEVHB WAD read port with full-buffered data output, and

half-buffered control propagation 174
E.3 HSE: PCEVFB WAD write port, with unconditional write-enable . 174
E.4 HSE: PCEVHB WAD write port, with unconditional write-enable . 175
E.5 HSE: PCEVFB WAD write port, with conditional write-enable . . 175
E.6 HSE: PCEVHB WAD write port, with conditional write-enable . . 175
E.7 HSE: PCEVFB data-independent read port with nested data . . . 176
E.8 HSE: PCEVHB data-independent read port with nested data, full-

buffered data output, and half-buffered control propagation 177
E.9 HSE: PCEVFB data-independent write port, with nested data . . 177
E.10 HSE: PCEVHB data-independent write port, with nested data . . 178
E.11 HSE: PCEVFB WAD read port with nested data 179

xx

E.12 HSE: PCEVHB WAD read port with nested data, full-buffered data
output, and half-buffered control propagation 180

E.13 HSE: PCEVFB WAD write port, with nested data, unconditional
outer write-enable, conditional inner write-enable variation 180

E.14 HSE: PCEVHB WAD write port, with nested data, unconditional
outer write-enable, conditional inner write-enable variation 181

E.15 HSE: PCEVFB WAD write port, with nested data, conditional
outer write-enable, conditional inner write-enable variation 181

E.16 HSE: PCEVFB WAD write port, with nested data, conditional
outer write-enable, conditional inner write-enable variation 182

F.1 HSE: WAD read control propagation array, where the termination
condition only sets RCf

o . 184
F.2 HSE: WAD read handshake control (full buffer) 184
F.3 HSE: WAD read handshake control (full buffered propagation, half-

buffered termination) . 184
F.4 HSE: the WAD write control propagation array, for unconditional

write-enable . 185
F.5 HSE: WAD write handshake control, with unconditional write-enable

(full buffer) . 185
F.6 HSE: WAD write handshake control, with unconditional write-enable

(full buffer propagation, half buffer termination) 185
F.7 HSE: WAD write control propagation array, with conditional write-

enable . 186
F.8 HSE: WAD write handshake control, conditional write-enable (full

buffer) . 186
F.9 HSE: WAD write handshake control, conditional write-enable (half

buffer) . 186
F.10 HSE: the register read data interface with R reset, modified for use

with nested data arrays . 187
F.11 HSE: resetting the write validity bitline 187
F.12 HSE: the nested interconnect component between the inner and

outer partition of the nested read port data array 188
F.13 HSE: a single bit of the data component of a data-independent

control-data join, with nested data 188
F.14 HSE: the nested interconnect component between the inner and

outer partition of the nested write port array 188
F.15 HSE: nested interconnect component between the inner and outer

partitions’ non-WAD read control propagation arrays 189
F.16 HSE: nested interconnect component between the inner and outer

partitions’ non-WAD write control propagation arrays 189
F.17 HSE: nested interconnect component between the inner and outer

partitions’ WAD read control propagation arrays 190
F.18 HSE: WAD nested read handshake control (full buffer) 190

xxi

F.19 HSE: WAD nested read handshake control (full-buffered propaga-
tion, half-buffered termination) . 190

F.20 HSE: the nested interconnect component between the delimiter bit
of the inner and outer partition of the nested write port array . . . 191

F.21 HSE: control nested interconnect between inner and outer partitions
of WAD nested write handshake control, unconditional outer write-
enable . 191

F.22 HSE: control nested interconnect between inner and outer partitions
of WAD nested write handshake control, conditional outer write-
enable . 191

H.1 PRS: core register cell, single ported 195
H.2 PRS: core register cell hard-wired to zero, single ported 195
H.3 PRS: delay-insensitive interface cell bewteen the data bits of inner

and outer banks of a nested register array, shown for a single read
port . 196

H.4 PRS: delay-insensitive interface cell bewteen the data bits of inner
and outer banks of a nested register array, shown for a single write
port . 197

H.5 PRS: delay-insensitive interface cell bewteen the delimiter bits of in-
ner and outer banks of a nested register array, used with conditional
outer write-enable, shown for a single write port 197

H.6 PRS: delay-insensitive interface cell bewteen the delimiter bits of
inner and outer banks of a nested register array, used with uncon-
ditional outer write-enable, shown for a single write port 198

H.7 PRS: unconditional read control propagation with locking, for two
ports with p = 0, 1 (q = 1− p) . 199

H.8 PRS: unconditional write control propagation with locking, for two
ports with p = 0, 1 (q = 1− p) . 199

H.9 PRS: unconditional read/write control propagation without locking
(for register 0), for a single port . 199

H.10 PRS: WAD conditional read control propagation with locking, for
two ports with p = 0, 1 (q = 1− p) 200

H.11 PRS: WAD conditional write control propagation with locking, and
unconditional write-enable wen, for two ports with p = 0, 1 (q = 1−p)200

H.12 PRS: delay-insensitive interface cell between inner and outer banks
of nested, unconditional read control propagation array, single port 201

H.13 PRS: delay-insensitive interface cell between inner and outer banks
of nested, unconditional write control propagation array, single port 201

H.14 PRS: delay-insensitive interface cell between inner and outer banks
of nested, WAD read control propagation array, single port 202

H.15 PRS: delay-insensitive interface cell between inner and outer banks
of nested, WAD write control propagation array, with conditional
outer write-enable, single port . 202

xxii

H.16 PRS: delay-insensitive interface cell between inner and outer banks
of nested, WAD write control propagation array, with unconditional
outer write-enable, single port . 202

H.17 PRS: delay-insensitive interface cell between inner and outer banks
of nested, WAD write control propagation array, with unconditional
outer write-enable, single port . 203

H.18 PRS: read/write data interface cell for a single port of a bit line . . 204
H.19 PRS: read/write data interface cell for a single port of a nested bit

line . 205
H.20 PRS: read handshake control for unconditional control propagation,

PCEVFB reshuffling . 206
H.21 PRS: read handshake control for unconditional control propagation,

PCEVHB reshuffling . 206
H.22 PRS: read handshake control for WAD conditional control propaga-

tion, PCEVFB reshuffling . 207
H.23 PRS: read handshake control for WAD conditional control propaga-

tion, PCEVHB reshuffling . 207
H.24 PRS: read handshake control for nested, WAD conditional control

propagation, PCEVFB reshuffling 208
H.25 PRS: read handshake control for nested, WAD conditional control

propagation, PCEVHB reshuffling 208
H.26 PRS: read handshake control for the terminal block. 209
H.27 PRS: write handshake control for unconditional control propagation,

PCEVFB reshuffling . 210
H.28 PRS: write handshake control for unconditional control propagation,

PCEVHB reshuffling . 210
H.29 PRS: write handshake control for WAD control propagation, with

unconditional write-enable wen, PCEVFB reshuffling 211
H.30 PRS: write handshake control for WAD control propagation, with

unconditional write-enable wen, PCEVHB reshuffling 211
H.31 PRS: write handshake control for WAD control propagation, with

conditional write-enable wen, PCEVFB reshuffling 212
H.32 PRS: write handshake control for WAD control propagation, with

conditional write-enable wen, PCEVHB reshuffling 212
H.33 PRS: write handshake control for control termination 213

xxiii

List of Abbreviations

CHP Concurrent Hardware Processes
CMOS complementary metal-oxide semiconductor
CRT constant response time
DRAM dynamic random access memory
HSE handshaking expansion
ISA instruction set architecture
ILP instruction-level parallelism
NFET n-diffusion field effect transistor
PFET p-diffusion field effect transistor
PCEVFB precharge enable-valid full-buffer (Section 4.1)
PCEVHB precharge enable-valid half-buffer (Section 4.1)
PCFB precharge full-buffer (Section 1.1)
PCHB precharge half-buffer (Section 1.1)
PRS production rule set
QDI quasi-delay insensitive
SCMOS scalable CMOS
SDI scalable-delay insensitive
SRAM static random access memory
TSMC Taiwan Semiconductor Manufacturing Company
VLSI very large scale integration
WAD width-adaptive datapath (Chapter 5)

xxiv

Preface

This preface has been written in the style of Frequently Asked Questions (FAQ).

“Should I read this thesis?” Absolutely. Asynchronous register files were
intended for children and adults of all ages. This thesis has something to offer for
everyone. To the layperson, the thesis works through the systematic design of a
complex subsystem with a divide-and-conquer approach. To a theoretician, this
thesis illustrates a direct application of mathematical transformations for synthe-
sizing a complex system whose correctness can be formally proven. To an engineer
or architect, this thesis surveys a large design space with the goal of designing
(perhaps jointly) for high performance and low energy. To a circuit designer,
this thesis demonstrates the modularity with which one can design a moderately
complex system of robust, self-timed circuits. Good asynchronous microprocessor
design requires approaches that are different than those of traditional synchronous
designs. For anyone who is familiar with asynchronous circuit design, this the-
sis gives a tremendous amount of detail of how new and old optimizations can
be applied to existing designs. A reasonable goal for anyone’s first reading is to
understand the fundamental ideas without getting lost in the forest of details.

“What do I need to know?” Among the plethora of program code sequences
and circuit diagrams and long-winded passages of text, one will find figures that
contain references to other figures or programs. Their hierarchical placement is no
accident. They have been placed to guide the reader through the bog of detail.
For a general understanding, one only needs to follow the figures that outline the
systematic division of each task into subproblems. As writing the thesis was a non-
linear task, reading through the thesis may be aided by back-pedaling along the
paved road. To venture slightly off the path will require one to become familiar
with the CHP program syntax described in Appendix A. The same syntax is
also used to describe the individual communication protocol actions, known as
handshaking expansions (HSE). Since we present only digital circuits, being able
to count to 1 should (in theory) be enough to understand all of circuits in the
thesis. In only a few passages will we mention analog circuit concepts.

“How is this thesis organized?” Chapter 1 provides background for register
files and asynchronous circuit design. Chapter 2 divides the task of designing
an asynchronous register file into smaller concurrent processes. Once the these
fine-grain processes are ‘simple’ enough, i.e., there exist straightforward template-

xxv

based implementations, we divide large work up into pipelined blocks to improve
the throughput in Chapter 3. In Chapter 4, we design circuits for the pipeline
block, which we use as the baseline for comparison of optimizations. Nothing
in the first four chapters is new because a similar design already exists in the
Caltech MiniMIPS. Chapter 5 presents a variable-width implementation that aims
to reduce energy by storing and communicating compressed integers instead of
full-width integers. Chapters 6 and 7 present alternative implementations that
reduce accesses to the core to further reduce energy. Chapters 4.4 through 9
describe transformations that make the core operate faster and with even less
energy. Chapters 5 and 9 are the most significant contributions of this thesis.
Many of the details in deriving circuits in the style of Chapter 4 have been placed
in the Appendices for the latter chapters, because the details are analogous, and
need not clutter the text further. Even more detail has been pushed into the
technical report [11], the ‘companion’ to the thesis.

“When I press my finger on the references, why don’t the pages
automatically turn?” Blame technology, no printer I am aware of supports
hyper-linked printouts.

“Do I get free food out of this?” Only if you come to the defense.

David Fang
fang@csl.cornell.edu

September, 2003

xxvi

mailto:fangspacefactor @m csl.cornell.edu

Chapter 1

Introduction

The core of typical modern microprocessors is equipped with a register file, whose
purpose is to provide extremely fast-access storage for a relatively small amount
of data. Register files commonly sit at the smallest and fastest end of the memory
hierarchy, followed by possibly one or multiple levels of cache, then main memory
(often DRAM), and finally disk. The register file is partially exposed as part of
the instruction set architecture (ISA) to the compiler, whose job is to allocate
available registers and schedule instructions as efficiently as possible for code per-
formance. Out-of-order superscalarprocessors are capable of dynamically renaming
registers, and can exploit greater instruction-level parallelism (ILP) by mapping
logical registers to a greater number of physical registers to support more in-flight
instructions.

While today’s mainstream microprocessors are designed synchronously around
a fixed clock frequency, self-timed or asynchronous microprocessor have demon-
strated competitiveness in performance and energy efficiency. In both synchronous
and asynchronous designs, the register file has been cited as a throughput bottle-
neck and a significant consumer of energy.

It is in the interest of the microprocessor community to investigate techniques
for accelerating register file accesses and reducing their energy consumption. In
this thesis, we present the systematic design of register files for asynchronous mi-
croprocessors and traverse the design space of optimizations in search of faster
and lower energy designs. The most important contributions of this thesis are 1)
a width-adaptive implementation of a vertically pipelined register core that saves
considerable energy by conditionally communicating and storing higher significant
bits of data, and 2) the introduction of non-uniform access register organizations
that do not increase the interconnect requirement nor do they complicate the con-
trolling environment.

1

2

1.1 Background

1.1.1 Asynchronous Circuit Synthesis

As integrated circuit technology continues to improve at an exponential rate, it
becomes more and more difficult to design and verify large-scale synchronous cir-
cuit designs. As wire delays become more significant with the shrinking of feature
sizes, timing model parameters must be corrected for each new silicon process.
Asynchronous design methodologies have been proposed as a solution to the in-
creasing difficulty of designing and verifying large-scale synchronous circuits. The
self-timed nature of asynchronous circuits makes designing large systems very mod-
ular, robust and portable between process technologies. With local communication
handshakes replacing the global clock, functional units are no longer constrained
by external timing, and may potentially speed up.

Power consumption is gaining attention as more modern applications demand
chips that require a minimal amount of energy to operate. Not only does global
clock distribution become more difficult due to clock skew, but it also contributes
as much as 40% of the total core power [6, 15]. Techniques for reducing power
consumption in synchronous designs include clock gating, which shuts off the clock
to idle components, and low-swing operation, which reduces the relative change in
voltage on selected nodes [22]. An often cited advantage of asynchronous designs
is that energy is only consumed when work is done, such as computation or data
movement, and hence requires no global clock distribution. Idle asynchronous
circuits require no phase-locked loop oscillator to keep a global clock continually
running.

Timing models. There exist many timing models for asynchronous cir-
cuits, including delay-insensitive (DI), speed-insensitive (SI), quasi-delay insen-
sitive (QDI), scalable-delay-insensitive (SDI), and bounded-delay [46]. Of partic-
ular interest is the QDI model, which only assumes unbounded gate delays and
isochronic forks on wires, and is the most conservative delay model for which one
can design useful asynchronous computing circuits [29, 30]. One primary advan-
tage of QDI is that no timing verification or analysis is required to confirm the
correctness of a circuit. QDI is sometimes criticized as being too conservative
and requiring more circuit overhead to guarantee delay insensitivity, in contrast to
non-QDI asynchronous designs, which have the additional difficulty of having to
verify timing assumptions about the speed of circuits.

Voltage scaling. One of the benefits of asynchronous design is the natural
property of continuous voltage scaling, which allows one to tradeoff performance
for power reduction by lowering the voltage. Synchronous designs must take a
two-step approach to voltage scaling: reducing clock frequency before lowering
voltage, or raising the voltage before increasing the frequency. However, delay-
insensitivity allows voltage scaling to occur while the circuits are operating, simply
by turning the supply voltage knob, without threatening the reliability of the

3

system — practically zero performance overhead in changing the level of operation.
Analytical methods for designing asynchronous pipelines for energy efficiency (as
opposed to only performance) based on pipeline dynamics have been proposed [49].

Synthesis. Without the need for timing verification, synthesizing QDI circuits
is a relatively straightforward procedure [29]. Figure 1.1 illustrates the design flow
of a QDI system. One begins with a sequential functional specification of an entire
system, such as a microprocessor. We use the traditional Communicating Hardware
Processes or CHP, a variant of Hoare’s CSP language, to specify the behavior of
concurrent communicating processes which compose a system [17]. A summary of
CHP notation can be found in Appendix A. The first several phases are a series
of semantic-preserving transformations and decompositions of CHP programs into
fine-grain processes. Compositions of these processes behave like parallel programs
with only point-to-point communications. The system specification is decomposed
into individual functional units, which exposes the underlying architecture and
functional support of the system.

layout

fine decomposition of units (CHP)

production rule set (PRS)

sequential description of system (CHP)

fabrication

vertical data pipelining (CHP)

production rule sizing

width−adaptive transformation (CHP)

decomposition into function units (CHP)

handshaking expansions (HSE)

floor decomposition (HSE)

Figure 1.1: Flow diagram of QDI synthesis procedure for an asynchronous system. The
design of the register file follows the steps shaded in gray.

The intermediate phases can be considered refinements of the functional units.

4

Functional units can be further decomposed into control processes and data pro-
cesses. Typically at this point, a numerical representation is chosen for data storage
and communication, such as binary dual-rail (1of2) or quad-rail (1of4), although
the representation may remain abstract. 1ofN or one-hot codes (and composi-
tions thereof) are commonly used to encode values in delay-insensitive channel
protocols. Asynchronous 1ofN communication actions strictly alternate between
producing a value by raising a single rail and returning all rails to neutral or null
(return-to-zero).

Vertical pipelining, which we will discuss in detail in Chapter 3, decouples con-
trol from data processes with the goal of improving throughput on a wide data-
path [25]. We design our register file to use the width-adaptive datapath represen-
tation, which enables energy-efficient communication of compressed integers. We
introduce width adaptivity as a transformation on non-width-adaptive pipelined
processes in Chapter 5.

Communicating protocol actions of the fine-grain processes can be expressed
as handshaking expansions (HSE), which can be translated into delay-insensitive
production rules. Rather than prove the delay-insensitivity of production rules for
every instance of communication, we can apply template compilation for just a few
common HSEs to cover all communication actions. The advantage is that since
the templates are proven correct in the general case, their specific instances are
automatically correct. The Caltech MiniMIPS datapath primarily used the four-
phase handshaking expansions of the precharge half-buffer (PCHB) and full-buffer
(PCFB), whose protocols are listed in HSE Programs 1.1 and 1.2, and delay-
insensitive circuit templates shown respectively in Figures 1.2 and 1.3 [23, 31].
In the HSEs, [L] represents waiting for the presence of data on channel L, or
data validity, and [¬L] represents input data neutrality. R↑ represents sending
data on the output channel R, and R↓ represents resetting R. Acknowledgment
signals are represented by superscript a or e. A positive input acknowledgment
(La↑ or Le↓) is returned when the input data token is no longer needed, and a
request acknowledgment (La↓ or Le↑) is returned when the process is ready to
accept the next token. We refer to the portion of the HSE up to the positive input
acknowledgment as the set phase, and everything thereafter including the input
request as the reset phase of the expansion. The en signal in the PCFB represents
an internal signal used to make states uniquely distinguishable for production rule
synthesis. In the circuit figures, the dashed line represents an abstract completion
tree for wider channels, which may invert the sense of the channel validity (Rv ,Lv)
signals. The generalization of the PCHB reshuffling to functions of multiple inputs
and outputs is listed in HSE Program 1.3 and illustrated in Figure 1.4. Each
output R[m] is computed by a function fm(), which depends on inputs L[0..n].

Program 1.1 Equivalent HSEs: precharge half-buffer (PCHB)

*[[¬Ra ∧ L]; R↑; La↑; [Ra]; R↓; [¬L]; La↓]
*[[Re ∧ L]; R↑; Le↓; [¬Re]; R↓; [¬L]; Le↑]

5

Program 1.2 Equivalent HSEs: precharge full-buffer (PCFB)

*[[¬Ra ∧ L]; R↑; La↑; en↓; (([Ra]; R↓), ([¬L]; La↓)); en↑]
*[[Re ∧ L]; R↑; Le↓; en↓; (([¬Re]; R↓), ([¬L]; Le↑)); en↑]

Le

Le

Re

Lv

Rv

Rv

Lv

Re

R1

R0

VDD

L0

L1

Rv

Lv
Le C

Figure 1.2: Precharge half-buffer (PCHB) with active-low acknowledgments

+

−

−

OR

en

Re

Lv

Rv

Rv

Lv

en

Re

R1

R0

VDD

L0

L1

Rven

Rv

Lv
Le

aC

aC

Rven

Rv

Lv
Le aC

C

Figure 1.3: Two equivalent implementations of a precharge full-buffer (PCFB) with
active-low acknowledgments

One additional phase we use in the synthesis of the register file is floor de-
composition, which aids us in physically mapping the production rule set onto a
partitioned plane for purposes of circuit layout, but more importantly, identifies
and isolates circuit modifications introduced by various register file transforma-
tions and optimizations from a higher level. In the end, we have a complete set
of production rules, which, by proof of semantic-preserving process transforma-
tions and delay-insensitive handshaking circuit templates, correctly implements

6

Program 1.3 HSE of a PCHB template for a function of multiple inputs and multiple
outputs

*[〈‖ ∀m : [R[m]e ∧ L[0..n]]; R[m] := fm(L[0..n])〉;
L[0..n]e↓;
〈‖ ∀m : [¬R[m]e]; R[m]↓〉;
[〈∧∀n : ¬L〉]; L[0..n]e↑

]

.
fm(L[0..n])

R[m]e

Le

R[m]

R[m]e

Le

R[0..m]vL[0..n]v

...
L[n]e

L[0]e
CC

C

f0(L[0..n])

R[0]

R[0]e

Le

R[0]e

Le

...

...

L[n]

L[0]

Figure 1.4: Abstract PCHB circuit template for a function with n inputs and m output
channels.

the entire system as originally specified.

1.1.2 Register File Models

Area. Register files are most commonly modeled as small multiported memory
arrays, with each cell storing one bit of information. Each cell is accessed by at
least one (vertical) word line per port, typically two (horizontal) lines per bit per
write port and at least one line per bit per read port [12,57,58]. While the number
of gates of a register cell is only linearly proportional to the number of ports, the
area scales linearly in both dimensions, therefore the cell area scales quadratically
with the number of ports.

7

Capacitance. Capacitance governs the performance and energy characteris-
tics of a register file. Sources of capacitance include gate fan-in and fan-out, wires,
and parasitic diffusion capacitances. The capacitances on word and bit lines de-
termine their switching rates and energies. The wire and parasitic components
become increasingly significant as feature sizes shrink with advancing technology.

Speed. Assuming that gate fan-in/out loads can be switched with a properly
amplified buffer chain, their delay is proportional to the log of the (lumped) ca-
pacitance [42]. Two other components of a register file’s access time are word line
and bit line delay. Both of these delays scale linearly with the number of ports
because the length of the wires is determined by the size of each cell. For a mono-
lithic array, the worst-case bit line delay is proportional to the number of register
words in a bank, while the worst-case bit-line delay is proportional to the word size
(architecture width in bits). The linearly scaling components of delay dominate
the total delay for sufficiently large register files. As the number of ports, the
word size, and the number of registers per banks increase, it becomes increasingly
difficult for synchronous designs to support single-cycle accesses to large register
files. Multi-cycle register files present their own problems because of the multiple
levels of bypassing required, and their negative impact on the branch misprediction
penalty [1].

Energy. On each access to the register file, one word line is switched for every
set of bit lines switched, so the energy dissipated by bit lines is far more significant
than the energy from the word line. The gate and diffusion capacitance compo-
nents are proportional to the number of registers (transistors) sharing the same bit
lines, whereas the wire capacitance is linearly proportional to both the number of
registers and the number of ports [42]. The bit line loads of heavily-ported register
files are dominated by wire capacitance. Although there exist circuit techniques
for reducing energy dissipation, such as reducing voltage swing, differential voltage
sensing, and current sensing, they only reduce energy by constant factors [57, 58].
Architectural changes in the bypass and register file organization have been pro-
posed to reduce the number of ports and the number of accesses to the register
file [1, 15,36,42,58].

1.2 Overview

In Chapter 2, we formally initially decompose the sequential specification of the
register file into three major concurrent processes: the core, bypass, and control.
These coarse-grained processes are then decomposed into fine-grain processes. In
Chapter 3, we introduce the vertical pipeline transformation, which decomposes
a single logical data channel into smaller physical channels to improve through-
put of data communications. We describe how register locking is implemented
in the core of the register file, which preserves pipelined mutual exclusion among
shared variables and channels while allowing control handshake to complete with
constant response time. In Chapter 4, we transform the pipelined core processes

8

into handshaking expansions using slightly different full-buffer and half-buffer tem-
plates, work through various floor decompositions in detail, and synthesize circuit
production rules. We also show results for two sizes of register cores to quantify
the benefits of register banking. Subsequent chapters in this thesis skip the floor
decomposition steps, however, details for all floor decompositions are provided in
a separate technical report for the interested and patient reader [11]. After Chap-
ter 4, the reader should have a good understanding of how the Caltech MiniMIPS
register file was designed [31], which closely resembles our initial base design of the
register core. The core base design is used as a basis of comparison for the optimiza-
tions and transformations presented in the rest of the thesis. Table 1.1 summarizes
which of the decomposed processes are affected by each transformation. An ‘x’ de-
notes where a process requires modification for a particular transformation.

Table 1.1: Register file components affected by various transformations

base design processes Control Bypass Core

vertical pipelining (Ch. 3) x x
register banking (Sec. 4.4) x x
width-adaptivity (Ch. 5) x x
register 0 read (Ch. 6) x x
register 0 write (Ch. 6) x
port priority select (Ch. 7) x x
unbalanced trees (Ch. 8) x
register nesting (Ch. 9) x

The following chapters present techniques and transformations for reducing en-
ergy consumed by the register file. In Chapter 5, we apply the width-adaptive rep-
resentation to the (already vertically pipelined) register file, which reduces switch-
ing activity and energy by suppressing communication of leading 0s and 1s in
integers on the datapath [25]. In Chapter 6, we examine some transformations
that reduce energy consumption on read and write accesses to the hard-wired reg-
ister zero. In Chapter 7, we apply a transformation to the bypass and control to
suppress redundant copies of operands in the core.

The final chapters present transformations for increasing the throughput of the
vertical control pipeline. In Chapter 9, we describe register array nesting, which
introduces variable access time registers, but requires no change to the bypass
or control. In these last two chapters, we also combine the new techniques with
width adaptivity and the optimizations presented in the earlier chapters, which
introduces some subtle cross-cutting issues.

Appendix A is a summary of the notation used in CHP programs. Appen-
dices B through E contain program listings for various processes of the register
file. Appendix G describes the global and local conventions used for resetting cir-
cuits. We have included listings for all derived production rules for the register

9

core in Appendix H. Finally, all results that appear throughout the thesis are
collected together in organized tables in Appendix J.

Chapter 2

Process Specification and
Decomposition

We start the design process given a sequential behavioral specification of the reg-
ister file. Using Martin’s synthesis procedure, we decompose the original speci-
fication into smaller processes that can then be easily translated into production
rules [29]. Our register file decomposition follows very closely to that of the Caltech
MiniMIPS. since both architectures are based on the MIPS R3000 [31]. By the
end of this chapter, we will have a set of fine-grain pipelined processes, whose con-
current operation correctly implements the sequential specification. In Chapter 3,
we describe how to improve the throughput of data-communicating processes with
vertical pipelining. In Chapter 4, we translate the final processes into handshaking
expansions and production rules for the base design circuits.

2.1 Sequential Specification

Our RISC-based architecture specifies two read ports X ,Y and two write ports
Z[0], Z[1] for the register file, although in our in-order architecture, at most
one value is written back at a time on any instruction iteration. Figure 2.1 shows
a schematic of the channel interface between the register file and its neighboring
processes.

One way one might write a sequential specification for the register file is shown
in CHP Program 2.1. The program has two distinct phases: an operand read phase
and a writeback phase. reg[0..31] are the integer values of the 32 general purpose
registers. RS ,RT , and RD are the channels that respectively encode the indices
(ranging from 0 to 31) of two source operands and a destination operand issued by
the decode unit. An iteration of the register file operation begins with receiving
the index variables rs , rt , and rd on their respective channels. In the read phase,
a non-null value on rs or rt tells the register file to output the appropriate index
register values on the respective X and Y operand buses. A null value on rs or
rt means that there is no need to read an operand. In the writeback phase, the
register file receives an exception status result from the writeback unit on each

10

11

Valid

RT

RS

RD

ZBUS

YX

Z
V

[0
]

Z
V

[1
]

Z[0] Z[1]Writeback

Decode

REGFILE

Read Operand Bus

Writeback Bus

Figure 2.2
CHP Program 2.1

Figure 2.1: Register file’s channel interface with its environment

Program 2.1 CHP: register file

REGFILE ≡
*[RS?rs , RT ?rt , RD?rd ;
[rs 6= null −→ X !reg[rs] [] else −→ skip],
[rt 6= null −→ Y !reg[rt] [] else −→ skip];
Valid?val ;
[rd 6= null −→ ZBUS?zbus ; ZV [zbus]?zv ;
[zv −→ Z[zbus]?t [] else −→ skip];
[val ∧ zv ∧ (rd 6= 0) −→ reg[rd] := t [] else −→ skip]

[]else −→ skip
]

]

iteration on channel Valid . null on rd means that no writeback result is expected.
If a result is expected, the decode also communicates ZBUS , which indicates from
which writeback bus data will be received. Execution units send a validity over the
writeback bus on ZV , accompanied by data on Z if the result is valid. If the final
result is valid, then the value of t is written into the reg array. Since the MIPS
instruction set architecture (ISA) sometimes exchanges the source and destination
register instruction fields, we require that the decode rearrange operands into their
corresponding logical channels if necessary.

While this initial specification suffices for correctness, it is restricted to operat-
ing in alternating read-write phases, whereas the register file has the potential to
perform both phases simultaneously in the absence of data dependences. Since the
writeback result for an instruction must arrive some time after the operands issue,
the register file can concurrently issue operands from one instruction while writing
back values from a previous instruction. This phase-overlapping can lead to a sit-

12

uation where a register is read and written at the same time. The correct thing to
do is to suppress reading the stale values and forward the recent writeback value
to the operand bus. This is precisely what a bypass mechanism does. Program 2.2
lists the modified sequential specification of the register file with exposed bypass
functionality.

Program 2.2 CHP: register file with explicit bypass

REGFILE ≡
*[RS?rs , RT ?rt , RD?rd ;

zx := (rs 6= null) ∧ (rs = z) ∧ (z 6= 0),
zy := (rt 6= null) ∧ (rt = z) ∧ (z 6= 0);
[rs 6= null −→ [zx −→ X !t [] ¬zx −→ X !reg[rs]]
[]else −→ skip
],
[rt 6= null −→ [zy −→ Y !t [] ¬zy −→ Y !reg[rt]]
[]else −→ skip
];
Valid?val ;
[rd 6= null −→ ZBUS?zbus ;

ZV [zbus]?zv ;
[zv −→ Z[zbus]?t [] else −→ skip];
[val ∧ zv ∧ (rd 6= 0) −→ reg[rd] := t [] else −→ skip]

[]else −→ skip
];
z := rd

]

In the read phase of Program 2.2, z holds the index of the register written from
the previous iteration, and t saves the result of the last value written back. Local
boolean variables zx and zy indicate whether or not t should be bypassed to the
X or Y output buses in place of the value read from the core. For non-bypassed
reads, X and Y receive their values directly from the reg array. Finally, the index
rd is saved in z for comparison with the read indices for the following iteration.
Note that it would also be correct to postpone RD?rd until immediately after
Valid? since rd is not used until the writeback phase.

In the rare event that the register file receives false on Valid from the writeback
unit, indicating that an exception has occurred, it does not matter what output is
produced because subsequent values are ignored and discarded until the instruction
stream becomes ‘valid-again.’ The specification of the register file’s environment
guarantees that the instruction that precedes the first valid-again instruction sends
RD !null. The precise exception mechanism is orthogonal to the design of the
register file, but the interested reader is invited to read how exceptions work in the
MiniMIPS [28].

13

The register access control for the delayed writeback of the bypass now guar-
antees that the same register is never read and written in the same loop iteration,
therefore it is safe to overlap the read and writeback phases. As we decompose
the control component of the register file in Section 2.5, we will express precisely
which actions can be parallelized.

2.2 Primary Decomposition

Valid

RI, WI

BPZX, B
PZY

BPWB

RT

RS

RD

ZBUS

X Y

Z[0] Z[1]

BPX, BPY

CONTROL

Z
V

[1
]

Z
V

[0
]

BYPASS

BYPASS

CORE

W[0]

R[1]R[0]

W[1]

Fig. 2.3
CHP 2.3

CHP 2.4Fig. 2.6

CHP 2.5

Fig. 2.7

Figure 2.2: Schematic of the Register File process decomposition.

Our first step in decomposition is to isolate variables into separate processes,
also known as projection [26]. We move all instances of the reg array into the
CORE process, and move all instances of the t variable into the BYPASS . All
remaining control variables will remain in the CONTROL process. The resulting
parallel composition is:

REGFILE ≡ CONTROL ‖ BYPASS ‖ CORE

Figure 2.2 illustrates a schematic of the decomposition of the register file. The
CONTROL must guarantee that it issues only safe and exclusive indices to the
CORE such that on each iteration:

1. no two write ports write to the same reg[i] in CORE

2. no reg[i] is ever being concurrently read and written in CORE

14

The first requirement is already satisfied by the original specification, since the two
write ports are mutually exclusive, however, the multiported CORE we present
is capable of supporting multiple concurrent writebacks in other designs. The
second requirement is guaranteed by comparing the source and destination indices
to invoke bypass-forwarding when read and write indices match.

Core. The sole purpose of the CORE process is to provide accessible stor-
age for the reg shared variables. To simplify the CORE as much as possible, we
minimize the interface to the CONTROL to a single channel per port that com-
municates the index (which may be null) at the start of each iteration. Each port
that receives a valid index performs a corresponding register read or write. We
decompose CORE further in Section 2.3.

Bypass. The BYPASS , shown in CHP Program 2.4, provides an interface
between the CORE and the datapath buses and receives steering controls from
the CONTROL. We have introduced auxiliary variables x ′, x ′′, y ′, and y ′′ to
differentiate the uses and definitions of temporary variable t . When rd 6= null
(and hence z 6= null on the following iteration), CONTROL sends the BYPASS
the conditional writeback signal BPWB , and the conditional copy signals BPZX ,
and BPZY , determined by zbus . We decompose BYPASS further in Section 2.4.

Control. To compose CONTROL, we take Program 2.2 and replace all uses of
t with communications to the BYPASS , and replace all uses of reg with communi-
cations to the CORE . The result is listed in Program 2.5. We have rewritten the
guards for the case statements of the read phase with equivalent guards in terms
of zx and zy . For the X port, zx ⇒ (rs 6= null), and ¬zx ⇒ (rs 6= z) ∨ (z =
null) ∨ (z = 0). If rs 6= null, we guarantee that the bypass sends some output to
the X bus, either from the writeback bypass or the core. If z 6= null, we guarantee
that the token on the writeback bus is received and thus consumed. The same ar-
guments hold symmetrically for the Y port and zy . We transform and decompose
CONTROL further in Section 2.5. One can easily verify in the CONTROL that,
between the writeback phase of one iteration and the read phase of the following
iteration, the BYPASS steering signals are always issued coherently, i.e., token
production and consumption are balanced in all processes, although the commu-
nication on the control channels need not be synchronized. The CONTROL is the
only process that is specific to our architecture; the BYPASS and CORE processes
that follow can be used in a more general class of architectures.

15

Program 2.3 CHP: register core

CORE ≡
*[WI [0]?wi[0],WI [1]?wi[1],RI [0]?ri[0],RI [1]?ri[1];
[ri[0] 6= null −→ R[0]!reg[ri[0]] [] else −→ skip],
[ri[1] 6= null −→ R[1]!reg[ri[1]] [] else −→ skip],
[wi[0] 6= null −→
[wi[0] = 0 −→W [0]? [] else −→W [0]?reg[wi[0]]]

[] else −→ skip
],
[wi[1] 6= null −→
[wi[1] = 0 −→W [1]? [] else −→W [1]?reg[wi[1]]]

[] else −→ skip
]

]

Program 2.4 CHP: register file bypass (sequential)

BYPASS ≡
*[[BPWB[0] ∧ BPZX [0] ∧ BPZY [0] −→

BPWB[0]?w0,BPZX [0]?zx0,BPZY [0]?zy0,Z[0]?t ;
[w0 −→W [0]!t [] else −→ skip],
[zx0 −→ x ′ := t [] else −→ skip],
[zy0 −→ y ′ := t [] else −→ skip]

[]BPWB[1] ∧ BPZX [1] ∧ BPZY [1] −→
BPWB[1]?w1,BPZX [1]?zx1,BPZY [1]?zy1,Z[1]?t ;
[w1 −→W [1]!t [] else −→ skip],
[zx1 −→ x ′′ := t [] else −→ skip],
[zy1 −→ y ′′ := t [] else −→ skip]

];
BPX ?mx ,BPY ?my ;
[mx = ”z0” −→ x := x ′

[]mx = ”z1” −→ x := x ′′

[]mx = ”core” −→ R[0]?x
],
[my = ”z0” −→ y := y ′

[]my = ”z1” −→ y := y ′′

[]my = ”core” −→ R[1]?y
];
X !x ,Y !y

]

16

Program 2.5 CHP: register file control

CONTROL ≡
z := null;
*[RS?rs , RT ?rt , RD?rd ;

zx := (rs 6= null) ∧ (rs = z) ∧ (z 6= 0),
zy := (rt 6= null) ∧ (rt = z) ∧ (z 6= 0);
[zx −→ RI [0]!null,BPZX [zbus]!true,
[zbus = 0 −→ BPX !”z0” [] else −→ BPX !”z1”]

[]¬zx −→ RI [0]!rs ,
[z 6= null −→ BPZX [zbus]!false [] else −→ skip],
[rs 6= null −→ BPX !”core” [] else −→ skip]

],
[zy −→ RI [1]!null,BPZY [zbus]!true,
[zbus = 0 −→ BPY !”z0” [] else −→ BPY !”z1”]

[]¬zy −→ RI [1]!rt ,
[z 6= null −→ BPZY [zbus]!false [] else −→ skip],
[rt 6= null −→ BPY !”core” [] else −→ skip]

];
Valid?val ;
[rd 6= null −→ ZBUS?zbus ; ZV [zbus]?zv ;
[val ∧ zv −→ BPWB[zbus]!true,WI [zbus]!rd ,WI [¬zbus]!null
[] else −→ BPWB[zbus]!false,WI [zbus]!null,WI [¬zbus]!null
]

[] else −→ skip
];
z := rd

]

17

2.3 Register Core

RI[0]

WI[0]

W[0] W[1]

R[0] R[1]

WI[1]

RI[1]RPORT[0]

WPORT[0] WPORT[1]

RPORT[1]

CORE

reg[0..31]

CHP 2.3

Fig. 2.4, CHP 2.6

Fig. 2.5, CHP 2.7

Figure 2.3: Schematic of the CORE decomposition

The decomposition of the CORE is relatively straightforward. The CORE has
exclusive use of the reg array of variables. We are assured that the CONTROL will
issue only compatible indices on any iteration, and that uses of the local index vari-
ables ri[0..1] and wi[0..1] are independent. Thus, we can decompose the CORE
into concurrent processes corresponding to the ports, as shown in Figure 2.3:

CORE ≡ RPORT[0] ‖ RPORT[1] ‖WPORT[0] ‖WPORT[1]
The reg array variables are now shared among all the port processes. Program 2.6
defines a core read port and Program 2.7 defines a core write port process. For
now, we must guarantee that the index controls on RI and WI do not become
decoupled because decoupling could lead to violations of read-write exclusion for
the registers. Therefore, we can only complete the receive actions RI ? and WI ?
after the reads and writes have completed.1

Program 2.6 CHP: core read port

CORE .RPORT[i] ≡
*[ri[i] := RI [i];
[(ri[i] 6= null) ∧ (ri[i] 6= 0) −→ R[i]!reg[ri[i]]
[](ri[i] 6= null) ∧ (ri[i] = 0) −→ R[i]!0
[] else −→ skip
];
RI [i]?
]

Furthermore, each port can be decomposed into a demux and data component
for each register as follows:

1We read and use the value of a channel without acknowledging the channel with the
notation var := CHAN .

18

Program 2.7 CHP: core write port

CORE .WPORT[j] ≡
*[wi[j] := WI [j];
[wi[j] 6= null −→W [j]?x ;
[wi[j] 6= 0 −→ reg[wi[j]] := x [] else −→ skip]

[] else −→ skip
];
WI [j]?

]

.

 RDEMUX

R
D

A
T

A
[1

]

R
D

A
T

A
[l−

1]

R

RI

R
D

A
T

A
[0

]

RPORT, CHP 2.6

CHP 2.9

RC0 RC l−1

CHP 2.8

Figure 2.4: Schematic of read port

.

WDEMUX

W
D

A
T

A
[l−

1]

W

W
D

A
T

A
[1

]

W
D

A
T

A
[0

]

WI

 CHP 2.11

WPORT, CHP 2.7

WC0WC l−1

CHP 2.10

Figure 2.5: Schematic of write port

CORE .RPORT[i] ≡ RDEMUX [i] ‖ 〈‖ ∀l : RDATA[l]〉
CORE .WPORT[j] ≡WDEMUX [j] ‖ 〈‖ ∀l : WDATA[l]〉

where RDEMUX , RDATA, WDEMUX , and WDATA are listed as Programs 2.8,
2.9, 2.10, 2.11, respectively. Now R is a shared output data channel, whose exclu-
sive use is guaranteed by the read port’s demux, as only one register is selected at a
time per port. W is a shared input data channel, whose exclusive use is guaranteed
by the write port’s demux. RC and WC are exclusive, decoded select channels
indexed by register line l and port number i . RC and WC can be interpreted as
1ofN-encoded channels that each use a single acknowledge.

By inserting the demuxes between the CONTROL and access to the reg array,
we have introduced another potential pipeline stage between the control and shared
data. Simply completing the receives on RC ? and WC ? in the DATA processes or
RI ? and WI ? in the DEMUX processes in the beginning of the iteration without
additional synchronization measures between the ports can decouple the ports and
may lead to a situation where read-write exclusion of the reg array variables is
violated.

In the RDATA process, for a read operation to remain atomic, we cannot
complete the communication on RC ? before reading from reg has completed. We
postpone completing the communication on RC ? until we are guaranteed that the
read is complete, while allowing the read to start as soon as the probe of RC is true.

19

Analogously, to keep a write to reg atomic in the WDATA process, we postpone
completing WC ? until after the write is complete, while letting the write start
when the probe of WC is positive. Specifying the DEMUX es in the same manner
preserves the guarantee that reading and writing are completed before the input
control tokens to the CORE are consumed and removed. In Chapter 3, we will
discuss how to pipeline the read and write ports with locking to preserve exclusion
in the presence of decoupling.

The MIPS ISA specifies that register zero (reg[0]) be hard-wired to the value
0. reg[0] is the only register that does not require read-write exclusion because
its value is constant. Thus, it is safe to complete the RC ? communication be-
fore sending 0 in RDATA, and safe to complete the WC ? communication before
completing the non-modifying write in WDATA.

In Chapter 3, we discuss the details of vertically pipelining RDATA and WDATA
while preserving exclusion. In Chapter 4, we translate the pipelined design into
handshaking expansions and production rules of circuits.

Program 2.8 CHP: read port demux

RPORT[i].RDEMUX ≡
*[ri[i] := RI [i];
[ri[i] 6= null −→ RC[ri[i], i]! [] else −→ skip];
RI [i]?
]

Program 2.9 CHP: single-register read port

RPORT[i].RDATA[l(6= 0)] ≡
*[RC[l , i]; R[i]!reg[l]; RC[l , i]?]

RPORT[i].RDATA[0] ≡
*[RC[0, i]?; R[i]!0]

Program 2.10 CHP: write port demux

WPORT[j].WDEMUX ≡
*[wi[j] := WI [j];
[wi[j] 6= null −→WC[wi[j], j]! [] else −→ skip];
WI [j]?

]

20

Program 2.11 CHP: single-register write port

WPORT[j].WDATA[l(6= 0)] ≡
*[WC[l , j]; W [j]?reg[l]; WC[l , j]?]

WPORT[j].WDATA[0] ≡
*[WC[0, j]?; W [j]?]

2.4 Register Bypass

The remaining decomposition of the BYPASS revolves around an observation from
the dataflow analysis of CHP Program 2.4: t is always written before it is read,
so t is never live on exit from any iteration, neither are x ′, x ′′, y ′, or y ′′ because
sending a variable on a channel counts as a use. Thus, all the bypass components
are independent and may be decomposed as follows:

BYPASS ≡ BPZ[0] ‖ BPZ[1] ‖ BPZX ‖ BPZY

where the writeback (conditional copy) processes BPZ[0] and BPZ[1] (which are
equivalent) are defined in Program B.1 and read-output merge processes BPZX
and BPZY (also equivalent) are defined in Program B.2. Figure 2.6 illustrates
the process decomposition of the bypass. The BPZ[0..1] and BPZX /Y processes
are simple enough that we can translate them into canonical handshaking expan-
sions. Since the BYPASS processes fit the templates for conditional output and
conditional input [23], their synthesis into production rules is straightforward and
uninteresting. Thus, we omit the remainder of the syntheses for the BYPASS from
this thesis.

2.5 Register Control

We now finish the transformation and decomposition of CONTROL. We have
observed in Program 2.5 that rd is not used until the writeback phase, and that
a copy of it is saved in z . Also note that Program 2.5 requires z to be initialized
to null before the main loop begins. If we peel the program loop back by one
writeback phase, we eliminate the need for rd by receiving a delayed copy of rd
with RD ′?z . CONTROL now issues the write index of the previous iteration. The
resulting program is listed as Program 2.12. The process that sends a delayed copy
of rd on channel RD ′ is

CONTROL.RDCOPY ≡ RD ′!null; *[RD?rd ; RD ′!rd]

which is a simple buffer with an initial output token.
The read and write phases of CONTROL can now execute concurrently because

we have eliminated dependencies across loop iterations. We decompose CONTROL
into:

CONTROL ≡ RDCOPY ‖ RSCOMP ‖ RTCOMP ‖WBCTRL ‖ ZBCOPY

21

Z[0] Z[1]

YX

BYPASS

BPZX

BPZY

BPZ[1]

BPZ[0]

W[1]

BPZY[0]
BPWB[0]

BPZX[1]
BPZY[1]
BPWB[1]

Z
X

[0]

Z
Y

[1]

BPX BPY

R[0]

ZY
[0]

R[1]

W[0]

ZX
[1

]

BPZX[0]

CHP 2.4

CHP B.2CHP B.2

CHP B.1 CHP B.1

Figure 2.6: Schematic of the bypass decomposition

as illustrated in Figure 2.7. RSCOMP and RTCOMP (Program C.1) compare the
source and destination indices to coordinate register reading between the BYPASS
and CORE . WBCTRL (Program C.2) determines whether or not a writeback value
will be committed to the CORE . These processes require private copies of zbus
and z , so we introduce ZBCOPY and transform RDCOPY into a copy-buffer, as
listed in Program C.3. These processes are simple enough to be synthesized as
buffered logical functions with multiple inputs and outputs as described in [23],
thus we omit the remainder of their syntheses from this thesis.

2.6 Summary

In this chapter, we have demonstrated how to decompose the sequential specifica-
tion of our register file into fine-grain concurrent processes. Through semantic-
preserving transformations, we have also proven that the parallel composition
of the processes correctly implements the original behavioral specification. In
Chapter 3, we further pipeline the data-driven components of the BYPASS and
CORE for improved concurrency and throughput. In Chapter 4, we synthesize the
pipelined processes into the production rules set that constitutes the base design
register file.

22

Program 2.12 CHP: register file control, after rolling back one writeback phase

CONTROL ≡
*[RS?rs , RT ?rt , RD ′?z , Valid?val ;

zx := (rs 6= null) ∧ (rs = z) ∧ (z 6= 0),
zy := (rt 6= null) ∧ (rt = z) ∧ (z 6= 0);
[z 6= null −→ ZBUS?zbus ; ZV [zbus]?zv ;
[val ∧ zv −→ BPWB[zbus]!true,WI [zbus]!z ,WI [¬zbus]!null
[]else −→ BPWB[zbus]!false,WI [zbus]!null,WI [¬zbus]!null
]

[] else −→ skip
],
[zx −→ RI [0]!null,BPZX [zbus]!true,
[zbus = 0 −→ BPX !”z0” [] else −→ BPX !”z1”]

[]¬zx −→ RI [0]!rs ,
[z 6= null −→ BPZX [zbus]!false [] else −→ skip],
[rs 6= null −→ BPX !”core” [] else −→ skip]

],
[zy −→ RI [1]!null,BPZY [zbus]!true,
[zbus = 0 −→ BPY !”z0” [] else −→ BPY !”z1”]

[]¬zy −→ RI [1]!rt ,
[z 6= null −→ BPZY [zbus]!false [] else −→ skip],
[rt 6= null −→ BPY !”core” [] else −→ skip]

]

]

23

BPWB[1]

RTCOMP

RDCOPY

ZBCOPY

WI[1]

ZV[0]

ZBUS

ZV[1]

WBCTRL

V
al

id

RT

B
PZ

X
[0]

R
I[0]

RSCOMP

B
PX

RS

B
PZ

Y
[0]

RD

B
PZ

X
[1]

BPWB[0]

R
I[1]

WI[0]

B
PY

B
PZ

Y
[1]

CONTROL, CHP 2.12

CHP C.1

CHP C.2

CHP C.1

Figure 2.7: Schematic of the control decomposition

Chapter 3

Vertical Pipelining

Thus far, we have defined fine-grain processes of the register file that are inde-
pendent of the data width or representation. Now we address the impact of data
width on the cycle time and performance of the CORE and BYPASS processes.
One of the limitations of QDI design is that local handshake cycle times include set
and reset delays through channels’ completion trees, therefore completing across
wider data channels is slower than completing across narrower data channels. A
secondary contributor to the cycle time is the delay of driving long word select
wires that are shared vertically across all bits of a register line.

Vertically pipelining the CORE and BYPASS results in completion trees over
narrower bundles of data, by decomposing a single logical data channel into a col-
lection of constituent physical (or logical) channels. Vertical pipelining is a prime
example of a process transformation that is motivated by consequences of physical
implementation. In this chapter, we formalize the vertical pipeline transformation
of the CORE and BYPASS at the CHP program level. We also discuss the nec-
essary precautions for preserving atomicity of pipelined reads and writes to the
CORE . Pipelined mutual exclusion guarantees coherent ordering among reads
and writes to shared variables [27]. In Chapter 4, we break down the communica-
tion actions between vertically pipelined stages into handshaking expansions and
finally synthesize them into production rules for the base designs. These initial
base designs will serve as the basis of comparison for the optimizations presented
in the remainder of this thesis.

3.1 Preliminary Concepts

The goal of pipelining is to improve performance by shortening critical paths,
which applies to both synchronous and asynchronous designs. In synchronous
designs, critical paths are the slowest paths between clocked register latches and
hence dictate the maximum rate at which the system may be safely clocked. In
self-timed asynchronous designs, however, critical paths may be determined by the
pipeline dynamics of token-hole occupancy, but ultimately, system cycle times are
bounded from below by the slowest cycle times of communication handshakes on

24

25

frequently-used paths [53].
As we have mentioned in Section 1.1.2, one of the significant components in

access time is the wire delay of the word lines, which is attributed to the gate fanout
and capacitance of wiring across the entire array of bit rows. Figure 3.1a shows a
monolithic, unpipelined register core with full-width fanout word lines. A common
technique for driving long word lines is using an amplification chain for speed. In
QDI designs, completion trees pose a greater threat to handshake cycle times. The
MiniMIPS used a pipelined completion datapath, as shown in Figure 3.1b, where
control signals are wire-copied to each of 8-bit blocks of the datapath, which in
turn, generates local copies of control within each block. Pipelined completion
results in narrower completion trees and reduced control fanout per block, and
hence reduces the cycle time of all units on the datapath, including the register
file. The pipelined completion blocks are synchronized by the copy-control which
collects the acknowledgments of across all blocks.

One disadvantage of pipelined completion is that control signals still need to
be wired across the entire datapath width to generate local control copies in each
block. Doubling the word line interconnect requirement can mean requiring more
metal layers or nearly doubling the word pitch of (horizontally) arrayed structures
such as register cells, which already suffer from large bit line loads. We design our
register files with vertical pipelining, as shown in Figure 3.1c, which also benefits
from reduced data completion trees and reduced control fanout, but explicitly
propagates control from block to block, and thus requires no full-width word line
interconnect.1 A design with both traditional (horizontal) and vertical pipelining
is said to be two-dimensionally pipelined or orthogonally pipelined.

Pipelined completion and vertical pipelining incur the same circuit overhead
over an unpipelined design. The area and energy overhead of control copying that
is incurred depends on the granularity of pipelining. We can trade area and energy
for increased throughput with finer pipelines, however, the improvement is limited
by diminishing returns. The circuits for the vertically pipelined register file are
actually identical to those of the pipelined completion design. Thus the expected
energy difference between them is accounted for by the additional wire interconnect
of copying control to each block in pipelined completion designs.

Since the CORE read and write port processes communicate on both control
and data handshakes, their cycle times are limited by the slower of the two hand-
shakes. Completion trees for the 1of32-channel control handshake can also limit
the maximum throughput of the ports. Section 4.4, and Chapters 8 and 9 present
different techniques for speeding up the control handshake.

A balanced distribution of word line control (such as wire-copying with pipelined
completion) keeps register file accesses block-aligned (Figure 3.2) so that the bit
lines are driven (within some timing margin) simultaneously. In synchronous
aligned datapaths, all bits of each datum are communicated in the same clock

1We call this vertical because traditional pipeline diagrams show pipeline stages flow-
ing horizontally from left to right.

26

(a) unpipelined (c) vertically pipelined(b) pipelined completion

w
or

d
lin

e
co

pi
es

co
nt

ro
l

read/write
bit lines

w
or

d
lin

es

ph
ys

ic
al

 s
ub

−
ch

an
ne

ls

lo
gi

ca
l d

at
a

ch
an

ne
l

ph
ys

ic
al

 s
ub

−
ch

an
ne

ls

Figure 3.1: a) an unpipelined core completes across the full data-width for each data
handshake whereas b) with pipelined completion, control signals are copied via copy-
trees or wires to several blocks, and data completion detection is confined within each
block, and c) a vertically pipelined core propagates control in a linear pipeline of blocks,
and thus, does not require additional interconnect. In each subfigure, data is communi-
cated horizontally and a decoded control arrives from the bottom. The thin rectangles
represent control repeaters. The triangles in the figures represent completion detection
trees in QDI asynchronous designs.

synchronous latches or
asynchronous buffers

Figure 3.2: Synchronous or asynchronous block-aligned datapath communication

cycle, and in asynchronous aligned datapaths, all bits of each datum are synchro-
nized by the same acknowledge.2 However, such synchronization is not required in
a delay-insensitive design; correctness is preserved even with unaligned control dis-
tribution, where bit lines may fire in an arbitrary sequence with unbounded delay.
The timing characteristics depend entirely on the topology of control distribution.
Vertical pipelining of asynchronous designs introduces a latency in propagating

2 Multiple acknowledge wires may be used, as long as they are synchronized some-
where in the datapath [31].

27

synchronous
latches

ReceiverSender

leading

lagging

Figure 3.3: Synchronous parallel skewed vertical pipeline operation

control through pipeline stages. Data tokens on different physical sub-channels of
the same logical data channel are no longer synchronized or aligned; rather, they
are block-skewed, where there is some phase delay between communication of the
block sub-channels.3 We have chosen to propagate control from the least significant
to the most significant blocks, the same direction as a ripple-carry. In Section 4.3.2,
we show that the vertical latency per stage is only two gate delays through a sin-
gle domino stage.4 Block-skewed vertical pipelining in an asynchronous datapath
allows the bottom (leading) blocks to start processing successive tokens while the
top (lagging) blocks finish preceding tokens, as illustrated in Figure 3.4.

lagging

or Buffer
ReceiverSender

leading

Function Unit

Figure 3.4: Snapshot of vertically pipelined, block-skewed datapath communication.
Like-shaded rectangles correspond to the same logical token. Control to functional units
are issued from the bottom, and propagated to the upper blocks, thus the lower blocks
will lead the upper blocks.

3 Called “byte-skewed” in Nyström’s dissertation [34], which specifies the granularity.
4 True only when control propagation is independent of arriving data

28

Another quantity worth considering in choosing granularity is the total vertical
skew , the difference between arrival times of control at the first and last pipeline
stage. Operations that depend on results from the most significant blocks, such as
conditional branches dependent on a compare, may slow down as the total vertical
skew increases with finer pipeline granularity. Since conditional branches occur
relatively frequently, a long vertical skew may adversely affect the overall system
performance.

Asynchronously pipelining the core ports that use the array of shared variables
reg without further modification may lead to a violation of mutual exclusion and
ordering. Consider a 1-read, 1-write ported register core to which a write con-
trol token is issued followed by a read control token. Suppose the write port is
stalled waiting for a result from a long latency operation. If the dependent read
port races ahead of the stalled write, it will read out a stale value from the regis-
ter, even though the control tokens were issued and completed sequentially. This
violation of a flow dependence is commonly known as a read-after-write (RAW)
hazard in traditional synchronous pipelines [38]. The reverse situation where a
later write overtakes an earlier read (anti-dependence) is a WAR hazard, which
can occur if the read operation is stalled. Violations of output dependences are
write-after-write (WAW) hazards. One solution for synchronous pipelines is to
detect such dependences and stall the pipeline as long as necessary to guarantee
correctness. Synchronous bypasses can also forward dependent results to respective
functional units to reduce the number of cycles stalled. The asynchronous solution
of pipeline locking is analogous to the synchronous counterpart. The advantage of
asynchronous locking is that the stall time is not restricted to any clock granular-
ity; a stalled operation may resume as soon as it is unlocked, without waiting for
the next clock edge. By restricting ourselves to only semantic-preserving transfor-
mations, the absence of data hazards in the sequential specifications automatically
guarantees hazard-free concurrent implementations. In Section 3.5, we formalize
the notion of locking in our concurrent process specifications.

3.2 Related Work

It is possible for synchronous designs to leverage vertical pipelining. Canal et al.
proposed a byte-parallel, skewed micro-architecture for variable width operands
on the datapath, in which higher order bytes are conditionally computed and
communicated an entire clock cycle behind lower order bytes [4]. Although their
proposed pipeline is optimized for full-width throughput, their vertical latency per
byte is an entire clock cycle (Figure 3.3), which is many times longer than the delay
through a single domino stage. The synchronous byte-parallel skewed architecture
requires more latching activity and bypass forwarding overhead. We will revisit
Canal’s proposed architectures in Chapter 5 when we discuss our asynchronous
implementation of significance compression.

A synchronous, vertically pipelined design could potentially use multi-phase

29

overlapping clocks to reduce the vertical delay per block [16]. The advantage of
self-timed vertical pipelining is that timing is governed by local handshakes, not
by any global constraints or margins, and is robust with delay-insensitive design.
Vertical pipelining incurs vertical control latching overhead in both synchronous
and asynchronous designs. However, no additional (horizontal) data latches are
required in the asynchronous datapath because the self-timed nature preserves
ordering and dependences, although asynchronous FIFOs or buffers may be added
in critical places to improve throughput [23].

There have been several approaches to preserving read-write ordering presented
in past asynchronous designs. Paver (1992) et al. implemented a locking mecha-
nism based on Sutherland’s Micropipelines (bundled-data, bounded-delay timing
model) to prevent RAW hazards in the AMULET1 processor [39, 46]. However,
their design still had to stall on dependent operands. The AMULET2 included a
lock FIFO along with a bypass mechanism where a writeback result could be use
directly as an operand [14]. However, the design was further complicated by the
necessary logic for determining the conditional execution of an ARM instruction.
The AMULET3 adds a reorder buffer for out-of-order execution, but does not pre-
clude the situation of concurrent reading and writing to a register [13]. Instead,
they guarantee that the read register value will be overridden by the uncondi-
tionally forwarded value from the bypass and only require that the indeterminate
values caused by conflict do not dissipate excess power.

The Caltech QDI MiniMIPS (1997) implemented pipeline locking in each stage
of control copy to guarantee pipelined read-write exclusion and ordering [27, 31].
Even though the MiniMIPS’ style of pipelining (pipelined completion) is different
than what we present in our designs, the same underlying principles lead to the
same production rules; the difference lies in the way we connect our pipelined
blocks. In this chapter, we describe pipeline locking detail and apply it to our
register file’s control propagation.

The ASPRO-216 (1997) standard-cell QDI microprocessor architecture sup-
ported out-of-order writeback in the register file [41]. The only synchronization
they required was a locking scheme to preserve read-after-write dependencies. The
SDI TITAC-2 (1997), based on the MIPS R2000, included a register file with a
read-after-write sequencer to stall the read of a concurrent read and write to the
same register [48].

The Asynchronous Lattice Filter (1994) is the earliest example of a fine-grained,
two-dimensionally pipelined asynchronous bit-skewed datapath [9]. Each bit of
the datapath constituted a vertical pipeline stage, which practically eliminated
completion trees on the entire datapath. The price paid for extremely low cycle
time is pipeline area and energy overhead for every bit. We compromised with a
granularity of four bits per vertical pipeline stage in all of the designs we explored
in this thesis.

The argument for block-skewing was also presented in Nyström’s dissertation in
his proposed Single Pulse Asynchronous Microprocessor (SPAM) architecture [34].
Supporting arguments for block-skewing included: simplicity of arithmetic com-

30

putation in most cases, which leads to simple layout, and trivial scalability to
arbitrary-width datapaths because of the constant-overhead interconnect require-
ments without linearly scaling long-wires.

3.3 Pipeline Templates

We describe the template for the vertical pipeline transformation. Starting with a
general unpipelined process as shown in Program 3.1, one simply divides full-width
actions into partial-width actions, and propagates control from one stage to the
next, in the manner shown in Program 3.2. Channel subscripts i and o differentiate
between input and output control channels. While this transformation preserves
the semantics of the original specification, its performance suffers from having each
stage wait until control propagations (Co !) are complete before finishing the receive
actions (Ci?), i.e., the pipeline consists of non-constant response time (non-CRT)
stages. The more vertical pipeline stages we use, the slower the cycle time! If the
individual program actions from the unpipelined process are independent of one
another (as is the case when no variables are shared), then one may complete the
receive actions concurrently with the control send actions, as shown in Program 3.3.
In the presence of shared variables, we employ explicit locks to guarantee that each
pipeline stage receives input controls in the same order as the unpipelined version,
even with constant-response-time (CRT) pipeline stages, which suffices to preserve
the original semantics. The general form of locked pipelines is listed in Program 3.4.
In Section 3.5, we will work out the example of pipeline locking in the CORE in
detail and translate the lock and unlock conditions.

Program 3.1 CHP: template for an unpipelined process

*[(Ci[1]?c[1], . . . ,Ci[j]?c[j]);
〈complete width actions 1 . . . j 〉
]

Program 3.2 CHP: template for a non-CRT vertically pipelined process

*[(c[1] := Ci[1], . . . , c[j] := Ci[j]);
〈partial width actions 1 . . . j 〉;
(Co[1]!c[1], . . . ,Co[j]!c[j]);
(Ci[1]?, . . . ,Ci[j]?)
]

3.4 Pipelined Bypass

Since the BYPASS processes share no variables between sub-processes, we can
safely complete control reception before control propagation, because FIFO op-
eration of control tokens suffices to guarantee correct operation. Programs B.4

31

Program 3.3 CHP: template for a CRT vertically pipelined process, with independent
actions

*[(Ci[1]?c[1], . . . ,Ci[j]?c[j]);
〈independent partial width actions 1 . . . j 〉;
(Co[1]!c[1], . . . ,Co[j]!c[j])
]

Program 3.4 CHP: template for a non-CRT vertically pipelined process, with locking

*[((unlocked(1) ∧ c[1] := Ci[1]), . . . , (unlocked(j) ∧ c[j] := Ci[j]));
〈partial width actions 1 . . . j 〉;
((lock(1); Co[1]!c[1]), . . . , (lock(j); Co[j]!c[j]));
(Ci[1]?, . . . ,Ci[j]?);
unlock(1 . . . j)
]

and B.3 are the respective vertically pipelined versions of Programs B.1 and B.2.
The terminal block (at the most significant position) of a vertical pipeline does
not propagate any control; the CHP for the terminal read bypass omits the merge
control BPXo and the CHP for the terminal write bypass omits the copy controls
BPWBo , BPZXo , and BPWBo .

Production rules of the pipelined bypass processes can be synthesized by ap-
plying any standard QDI template such as PCHB or PCFB, thus we omit their
derivation.

3.5 Pipelined Mutual Exclusion: Core

We have isolated the use of shared variables to only the CORE processes. The
final step in transforming the register file core into pipelined processes is to apply
pipeline locking to protect the use of the reg shared variables against data hazards.
Program D.1 describes the read and write multi-ported process composition for a
single register line. In this program, R and W represent full-width output and
input channels shared across all registers. The demuxes guarantee that only one
register per port is communicating on these channels, and accessing a particular
reg[l] at any time.

Following the template transformation from Section 3.3, we divide the full-
width operation into partial width operations, which results in Program D.2. The
reg[l] variables are now divided into blocks of arbitrary bit granularity. The least
significant blocks are controlled directly by the demuxes, and the most significant
blocks omit control propagation.

Since Program D.2 is non-CRT, at most one control token may occupy a port
at any given time, therefore the CORE (including the demuxes) preserves the
mutual exclusion guaranteed by the CONTROL. Our goal, however, is to pipeline

32

(b)

(a)

CHP D.5

CHP D.5

CHP D.4

CHP D.4

WCo

WCi
WCo

WCi

RCo

RCi
RCo

RCi

W

W

R

R

Figure 3.5: Pipelined core process blocks for a) reading and b) writing

the CORE in a manner that allows CRT while maintaining atomicity and mutual
exclusion among accesses to shared variables.

We apply the transformations given by the theorems in [27] (whose template
is shown in Program 3.5), which results in CHP Program D.3. We have introduce
shared lock variables rx and wx and auxiliary channels RC ′ and WC ′ that guard
the use of reg and control propagation actions. In the read port, we unlock rx↓
after R!reg and RCo to guarantee exclusive use of reg and of the control rails.
Analogously, we unlock wx↓ after W ?reg and WCo in the write port. When we
introduce data-dependent control propagation in Chapter 5, this specification will
be slightly modified.

Program 3.5 CHP: template for pipelined process with locking at the receivers

*[[C ′]; lock ; C ′; (〈data action〉,Co); unlock]

‖ *[[Ci ∧ unlocked]; C ′; Ci]

To illustrate locking from the read port block, rx↑ guards RC ′, so that after
RC ′ is communicated, we are assured that WC ′ cannot occur until after rx↓, thus
we can acknowledge the input control RCi . When R!reg is finished, unlocking rx↓
completes the iteration. The actions in the write port block occur analogously.
The new block specifications are able to complete communication on the input
control channels without having to wait for acknowledgment on the output control
channels, thus we have CRT so we can expect pipelined, block-skewed behavior
and performance on the datapath as described with Figure 3.4.

Currently, CHP Program D.3 specifies that the control receivers are responsible
for maintaining the lock. But since we have multiple receivers (control and data
bit cells) for each sender (control only), it would be more efficient to maintain

33

locking at the sender and leverage the read-write exclusion of the input control
channels. We show the template for this new transformation in Program 3.6.
Since the word line controls RC and WC for a single register are guaranteed to
be read-write exclusive, we no longer need to guard 〈data actions〉 (here, uses of
reg) with lock variables; the locking variables rx and wx appear only in the control
propagation component, so the data components are much simplified. C ′ is just a
local copy of the Ci for the data actions. We have introduced a synchronization
on C ′′ to signal to the control when the actions are finished, before completing the
receive communications. In the next chapter we show that C ′′ translates to only a
validity signal as opposed to a complete handshake. Applying this template results
in Programs D.4 and D.5, which show the respective pipeline-locked read and write
port processes with the locking maintained by the control-sending component. The
terminal blocks for the read and write ports omit control propagation channels RCo

and WCo and lock variables.

Program 3.6 CHP: template for pipelined process with locking at the sender

*[C ′; 〈data action〉; C ′′]

‖ *[[Ci]; C ′; [unlocked]; lock ; (Co , (C ′′; Ci)); unlock
]

Shifting the responsibility of locking to the sender means that the DEMUX es
from Programs 2.8 and 2.10 require the same locking mechanism as the control
propagation components of the pipelined ports, if we want to decouple the input
control from the decoded output. With the addition of locking variables and
guards, the resulting CHP for the DEMUX es are shown in Programs D.6 and D.7.

It is admittedly somewhat clumsy to express this transformation precisely in
high-level CHP without exposing the phases of handshaking. In Section 4.1, we
fully specify the synchronizations required to correctly implement communication
handshakes on the control and data channels.

3.6 Register Zero

For completeness, we include the CHP decomposition of the core read and write
blocks for the hard-wired zero register. Since the value of reg[0] is constantly 0,
all writes to this register are non-modifying. Reads and writes to the zero register
may be freely re-ordered, thus, we can pipeline accesses to register zero without
lock variables. The pipelined zero-register block is specified in CHP Program D.8.

In Chapter 6, we present alternatives for implementing register zero in the
CORE by modifying the BYPASS and CONTROL.

34

3.7 Summary

We began this chapter by motivating vertical pipelining as a way to decrease the
cycle time of data communication. We introduced vertical pipelining as a trans-
formation of a single logical data channel into smaller physical channels, which
results in narrower completion trees in each pipeline stage. The transformation of
the BYPASS is straightforward because no shared variables are accessed. How-
ever, in order for the CORE to maintain pipelined, mutually-exclusive access to
the shared channels and variables, we employed pipeline locking to preserve read-
write ordering as issued by the CONTROL while allowing constant response time
(CRT) in the vertical control pipeline. Although CRT vertical pipelining allows
acknowledgment upon partial completion of a full-width data action, mutual ex-
clusion preserves the atomicity of the full-width actions with shared variables.

With a new transformation, we shifted the responsibility of locking to the
component that sends the control, which simplified the data read and write com-
ponents by guaranteeing that the word select control channels for each register
maintained read-write exclusion. Finally, we briefly described the difference for
the hard-wired zero register in the core. The transformations presented in this
chapter closely follow those used in the design of the Caltech MiniMIPS [31] —
the intention here is to provide sufficient detail for understanding the high-level
program transformations that impact the low-level synthesis. In Chapter 4, we
break the pipelined read and write ports down into handshaking expansions and
synthesize circuit production rules for the base design of the register file CORE .

Chapter 4

Core Base Design

In the last chapter, we concluded with CHP specifications of the vertically pipelined
register core read and write ports. Now we synthesize these pipelined block pro-
cesses into production rules for the base design of the CORE . The majority of the
remainder of this thesis focuses on optimizing the CORE for throughput and en-
ergy efficiency. Since the CONTROL process depends largely on the architectural
specification, we omit the derivation and optimization of its production rules from
this thesis. Since the BYPASS processes’ syntheses is straightforward and uninter-
esting, we also omit their production rules. The CORE alone spans a significant
design space to explore, and therefore requires careful attention to design well. By
focusing exclusively on the CORE , we are setting up for the optimizations in the
remainder of the thesis with a detailed foundation for the base design.

4.1 Template Handshaking Expansions

The next step in synthesis is to expand the communication actions of the CHP
processes into handshaking expansions or HSE. There are many QDI handshaking
expansion templates that one could apply to synthesize the pipelined CORE pro-
cesses [24]. The optimal choice of buffer reshuffling depends on the communication
environment and the additional functionality required for a given CHP process.
Ultimately, our choices are driven by circuit-level implications.

A vertical pipeline stage of a read or write port can be regarded as a control
buffer with added register functionality. Though we have written the pipelined core
processes as independent CRT (3.5) processes (with shared variables and channels),
recall that each port process is controlled by exclusive 1of32-encoded channels, as
specified by the demuxes. For each port, all registers share the same communi-
cation control with the environment, since the read and write data channels are
shared. Signals that are wired across the array will have considerable fanout and
load. For speed and energy and area, we would like to minimize the number of
signals that are shared across the all registers.

We are, however, averse to implementing the core control propagation with the
traditional PCHB and PCFB reshufflings because both require two enable signals

35

36

in the precharge-domino stage for the output rails [23]; we use a variation that
combines them to one signal, which also reduces the size of the transistor stacks.

We avoid recomputing the 1of32 control validity twice (once as input, once as
output) by using a single shared validity signal that acts as output completion and
as an input validity to the successor stage [53]. The shared validity signal also has
the benefit of roughly halving the energy spent in detecting validity completion
across each control channel. To maintain QDI, we must start the validity comple-
tion after the output inverter, as opposed to starting with a NAND gate like in the
PCHB and PCFB. Non-QDI variations are feasible and have been evaluated [35],
however, we restrict ourselves to only QDI circuits. Now the channel consists of
data rails, and acknowledgment rail, and a validity rail. One could apply this
transformation to the original PCFB and PCHB to yield equivalent reshufflings
that use an extra validity rail in the handshake protocol.

We are interested in reshufflings that require only a single signal in the precharge
stack. Two such template reshufflings that fit our criteria are the precharge enable-
valid full-buffer or PCEVFB (Program 4.1, Figure 4.1) and precharge enable-valid
half-buffer or PCEVHB (Program 4.2, Figure 4.2). ‘Enable’ means that the chan-
nel response is active-low, whereas ‘acknowledge’ is active-high. ‘Valid’ means
that the shared completion signal is active-high, whereas ‘neutral’ is active-low.1

Any combination of these is equivalent since they have the same underlying se-
quence of actions. The major difference between these reshufflings and the PCHB
and PCFB is that the en actions have been postponed to succeed the Re actions,
which allows us to use only en in the precharge stage of the control rails. Rv serves
both as the output validity of the current stage, and as the input validity of the
successor. There are other possible reshufflings that meet our requirements, but
rather than exhaust all possibilities, we restrict our attention to the PCEVFB and
PCEVHB for the remainder of this thesis. Production rules for the enable-neutral
PCENFB and PCENHB variations of the circuits presented are provided in the
Appendix of the technical report [11], but are omitted from this thesis.

Program 4.1 Equivalent HSEs: precharge enable-valid full-buffer (PCEVFB)

*[[¬Ra]; en↑; [L]; R↑; La↑; [Ra]; en↓; R↓, ([¬L]; La↓)]
*[[Re]; en↑; [L]; R↑; Le↓; [¬Re]; en↓; R↓, ([¬L]; Le↑)]

Program 4.2 Equivalent HSEs: precharge enable-valid half-buffer (PCEVHB)

*[[¬Ra]; en↑; [L]; R↑; La↑; [Ra]; en↓; R↓; [¬L]; La↓]
*[[Re]; en↑; [L]; R↑; Le↓; [¬Re]; en↓; R↓; [¬L]; Le↑]

1There is currently no standard naming convention. This is what we have arbitrarily
chosen for this thesis.

37

−

en

VDD

en

Le

L0

L1

aC

Re

Rv

R1

R0

en

Rv

Lv

C

Figure 4.1: Precharge enable-valid full-
buffer (PCEVFB) template

en

VDD

L1

L0

en

Le

Re

Rv

R1

R0

en

Rv

Lv
C

C

Figure 4.2: Precharge enable-valid half-
buffer (PCEVHB) template

4.1.1 Half-Buffer vs. Full-Buffer

We are left to choose between the half-buffer and full-buffer reshufflings for the
read and write port processes. Often cited reasons for preferring full-buffering
are that its cycle time is shorter by roughly two transitions and that it provides
greater slack per stage [23]. However, where throughput and slack are not critical,
half-buffering has the advantage of being simpler to design due to its symmetry.

A vertically data-pipelined asynchronous datapath has the advantage of decou-
pling the data-pipeline from the control-pipeline. As discussed in Chapter 3, the
major benefit from two-dimensional pipelining is that throughput is improved by
the reduction in size of completion trees and reduction in fanout of control signals.
Another property of two-dimensional pipelining is that the decoupled horizontal
and vertical pipelines may have different buffering. Figure 4.3 illustrates the four
combinations of buffering for an two-dimensional control-data pipeline.

For example, high slack is preferred in the horizontal data direction to better
accommodate in-flight data tokens in a cyclic datapath. It is reasonable to fix
the data buffering of our design space to full-buffering. This only makes a minor
difference for the read port, and makes no difference to the write port because
is produces no data output tokens. Since the vertical control pipeline does not
form a cycle, buffering the control pipeline with high slack is not critical. In
the base design, it may seem obvious that full-buffering is a better choice for
throughput, because the reshuffling allows more concurrency in the handshake.
For optimization comparisons in the remainder of this thesis, we show results for
both control bufferings.

38

(a) half-buffer control, half-buffer
data

(b) half-buffer control, full-buffer
data

(c) full-buffer control, half-buffer
data

(d) full-buffer control, full-buffer
data

Figure 4.3: Examples of two-dimensional pipelining. The control pipeline is vertical,
and the data pipeline is horizontal. Tokens are represented by diagonal bands of colored
rectangles.

4.1.2 Core Read Port HSE

Recall from Programs D.3 and D.4 that the core read port pipelines take one
control channel as an input, and produce a control output and a data output;
a single input forks to two outputs. Applying the PCEVFB reshuffling to this
process, we obtain Program 4.3. The RC↑ action represents setting one of the 32
word select lines, and Ro↑ represents setting all of the dual-rails of a pipeline block
of the read port.

While this looks like a sufficiently simple expansion, there is one serious prob-
lem. Recall that in our base design, we have an array of 32 registers, and hence
our production rules will have an array of precharge stages for control propaga-

39

Program 4.3 HSE: PCEVFB data-independent read port (version 1)

*[[Re
o ∧ RC e

o]; ren↑; [RCi]; (Ro↑, [unlocked() −→ lock ; RCo↑]); RC e
i ↓;

[¬Re
o ∧ ¬RC e

o]; ren↓; (Ro↓, (unlock ; RCo↓), ([¬RCi]; RC e
i ↑))

]

tion, each of which require ren as an input. As we will show in Section 4.3.1, each
register bit cell will also require ren as an input. Multiply the number of registers
by the number of bits controlled by a single block (say four), and we are looking
at a branching factor of over 160, a serious threat to our cycle time! To reduce
the fanout, we decouple the control and data and give them separate enables renC

and renD . This transformation gives us Program 4.4. Note that we can apply the
same transformation to decouple each bit line, i.e., give each bit line its own renD

with a fanout of roughly 32.

Program 4.4 HSE: PCEVFB data-independent read port (version 2)

*[(([Re
o]; renD↑), ([RC e

o]; renC↑));
[RCi]; (Ro↑, [unlocked() −→ lock ; RCo↑]); RC e

i ↓;
(([¬Re

o]; renD↓), ([¬RC e
o]; renC↓));

(Ro↓, (unlock ; RCo↓), ([¬RCi]; RC e
i ↑))

]

However, we have not finished exploiting all the available concurrency. Pro-
gram 4.4 still enforces the orderings renC↑ ≺ Ro↑ and renD↑ ≺ RCo↑ and their in-
verses, which are unnecessary. By removing the sequential synchronizations around
[RCi], we can decouple the output setting actions. In the reset phase, removing
the synchronization after renC↓ and renD↓ decouples the Ro↓ and RCo↓ actions.
Finally we must check that renC and renD have reset before requesting the next
control token with RC e

i ↑ and restarting the cycle. The final transformed result
is Program 4.5. One can generalize the same transformation to decouple each bit
line and generate a separate renD for each bit line.

Program 4.5 HSE: PCEVFB data-independent read port (version 3)

*[(([Re
o]; renD↑; [RCi]; Ro↑),

([RC e
o]; renC↑; [RCi ∧ unlocked()]; lock ; RCo↑));

RC e
i ↓;

(([¬Re
o]; renD↓; Ro↓),

([¬RC e
o]; renC↓; unlock ; RCo↓),

([¬RCi ∧ ¬renD ∧ ¬renC]; RC e
i ↑)

)
]

If we apply the same transformations we used for the PCEVFB on the PCEVHB
reshuffling of the core read port, the result is HSE Program 4.6, which keeps the

40

data output full-buffered while control propagation remains half-buffered. Since
the data output handshake with the read bypass is straightforward, we chose to fix
the data handshake as a full-buffer for better throughput throughout the remainder
of the thesis.

Program 4.6 HSE: PCEVHB data-independent read port with full-buffered data out-
put, and half-buffered control output (version 3)

*[(([Re
o]; renD↑; [RCi]; Ro),

([RC e
o]; renC↑; [RCi ∧ unlocked()]; lock ; RCo↑));

RC e
i ↓;

(([¬Re
o]; renD↓; Ro↓),

([¬RC e
o]; renC↓; unlock ; RCo↓; [¬renD ∧ ¬RCi]; RC e

i ↑));
]

The terminal block of the pipelined read port has a single control input and a
single data output. The HSE shown Program 4.7 is just Program 4.5 stripped of
the RCo control output channel, and is equivalent to a full-buffer because RC e

i ↑
does not wait for Ro↓.

Program 4.7 HSE: terminal block of read port

*[[Re
o]; renD↑; [RCi]; Ro↑; RC e

i ↓;
(([¬Re

o]; renD↓; Ro↓), ([¬RCi ∧ ¬renD]; RC e
i ↑))

]

4.1.3 Core Write Port HSE

Program 4.8 HSE: PCEVFB data-independent write port (version 1)

*[[WC e
o]; wen↑; [WCi];

([unlocked() −→ lock ; WCo↑], [Wi −→ 〈write〉]);
(WC e

i ↓,W e
i ↓);

[¬WC e
o]; wen↓; ((unlock ; WCo↓), ([¬WCi ∧ ¬Wi]; (WC e

i ↑,W e
i ↑)))

]

Applying the PCEVFB reshuffling to the write port (Programs D.3 and D.5),
we obtain Program 4.8. The join process for the write port is asymmetric, unlike
the fork process of the read port. Control propagation is independent from the
arriving data, i.e., WCo↑ does not have to wait for [Wi], whereas writing to the
actual register must wait for [WCi ∧ Wi]. (We will introduce data-dependent
control in Chapter 5.)

The key observation is that since writing does not produce an output, there is no
need for 〈write〉 to be guarded by wen; only the output control propagation requires

41

wen in its guards. After decoupling register writing from control propagation, the
result is Program 4.9. We have introduced a new variable wvc that indicates
when writing is complete, and combined WC e

i ≡W e
i because they share the same

guards.
Note that the expansion for the data-writing component is completely inde-

pendent of the reshuffling chosen for the control propagation. We can short-cut
through the same derivation for the PCEVHB reshuffling, which results in Pro-
gram 4.10.

Program 4.9 HSE: PCEVFB data-independent write port (version 4)

*[[WC e
o]; wen↑; [WCi ∧ unlocked()]; lock ; WCo↑; [wvc]; WC e

i ↓;
[¬WC e

o]; wen↓; ((unlock ; WCo↓), ([¬WCi ∧ ¬wvc]; WC e
i ↑))

]

*[[WCi ∧Wi]; 〈write〉; wvc↑; [¬Wi]; wvc↓]

Program 4.10 HSE: PCEVHB data-independent write port (version 4)

*[[WC e
o]; wen↑; [WCi ∧ unlocked()]; lock ; WCo↑; [wvc]; WC e

i ↓;
[¬WC e

o]; wen↓; unlock ; WCo↓; [¬WCi ∧ ¬wvc]; WC e
i ↑

]

*[[WCi ∧Wi]; 〈write〉; wvc↑; [¬Wi]; wvc↓]

The terminal block for the write port pipeline is listed in Program 4.11 is the
same as Program 4.9 without the WCo control propagation channel. Since the
terminal write block only takes in a control input and a data input, and produces
no output, buffering does not apply to the terminal block.

Program 4.11 HSE: terminal block of write port

*[[WCi ∧ wvc]; WC e
i ↓; [¬WCi ∧ ¬wvc]; WC e

i ↑]
*[[WCi ∧Wi]; 〈write〉; wvc↑; [¬Wi]; wvc↓]

4.2 Floor Decomposition

In the floor decomposition phase of synthesis, we partition the handshaking ex-
pansions into components that correspond to the physical placement of production
rules. As we explore the design space of different optimizations, we can isolate the
modifications to specific regions of the floor decomposition. This makes produc-
tion rule and layout generation conveniently modular for our study on register core
optimizations.

Figure 4.4 shows how the CORE .BLOCK process is physically decomposed into
four quadrants: the register data cell array, the control propagation and completion
array, data interface and communication array, and the handshake control. The

42

chosen reshuffling (full or half buffer) only affects the handshake control block. As
we floor-decompose the read and write ports, we will show how the various control
and data signals fit into the figure.

cell array

re
ad

/w
ri

te
co

m
pl

et
io

n
da

ta
 in

te
rf

ac
e

ar
ra

y
handshake

control
control propagation completion

control propagation array

xvt xpi xcell

Fig. 3.1c

ycp

ycell

yht

Figure 4.4: Floorplan of a vertically pipelined register core block for reading and writing,
from Figure 3.1c

4.2.1 Decomposed Reading

interface

read/write

cell array
register data

control propagation array

control

handshake

array

RCo

RCiRCv
i

RCe
i

RCv
o

R

renD

RCe
o

Re

Rv
R

renC

RCv
o

renv
Rv

Figure 4.5: Floor decomposition of a read port block, shown with channel signals and
some internal signals at component boundaries

43

HSE 4.5 decomposition

Fig. 4.11
PRS H.1
HSE 4.12

HSE 4.15
PRS H.7
Fig. 4.12

Fig. 4.14

HSE 4.13
PRS H.18

HSE 4.17
PRS H.20
Fig. 4.15

Figure 4.6: Floor decomposition of a
PCEVFB read port

HSE 4.6 decomposition

Fig. 4.11
PRS H.1
HSE 4.12

HSE 4.15
PRS H.7
Fig. 4.12

Fig. 4.14

HSE 4.13
PRS H.18

HSE 4.18
PRS H.21
Fig. 4.16

Figure 4.7: Floor decomposition of a
PCEVHB read port

Figure 4.5 shows the relative placement of channel signals and internal nodes
at the boundaries of the floor decomposition components. Figures 4.6 and 4.7
outline the steps that follow in synthesizing production rules from the full-buffer
and half-buffer handshaking expansions of the core read port. As we apply floor
decomposition to the HSEs of the various core ports, we often find it necessary
or convenient to lower the abstraction of certain signals and actions to expose the
CMOS-implementability requirement. For CMOS, a production rule set (PRS)
may contain only guarded actions whose output is opposite to the sense of their
input, i.e., each production rule must be inverting. In the read port floor decom-
position, we introduce a pseudo-channel, R, which represents the inverted sense
of the R shared data channel. R will be wire-shared across the register cell array,
which means we can use only NFETs (stronger than PFETs) in the cells, which
use RCi as active high inputs. The R data channel rails which connect to the
environment, will be driven by inverters, which has the advantage of high gain
amplification.

Program 4.12 HSE: the register read cell array component, set-only

REG DATAread[b, l] ≡
*[[RCi[l] ∧ renD[b]]; R[b]↓; [R[b]]]

Program 4.13 HSE: the register read data interface with R reset

REG INTRFCread[b] ≡
*[[Re ∧ RC e

i]; renD[b]↑; [¬ R[b]]; R[b]↑;
[¬Re ∧ ¬RC e

i]; renD[b]↓; R[b]↑; R[b]↓
]

44

The read cell, shown in Program 4.12, is replicated in a 2-dimensional array,
once per register word line (32), and once per bit line (4). The read data interface,
Program 4.13, is replicated (vertically) once per bit line. Each bit line will have its
own renD , R, and R while Re and RC e

i are wire-shared across all the vertical array
of data interface cells. Since the pull-up production rule for R↑ is independent of
the register word selected by RCi , we can use a single ¬renD pull-up on R instead
of replicating the same rule in every cell.

Program 4.14 HSE: completion tree for Rv in read port

REG CTRv ≡
*[[〈 ∧ ∀b :: R[b]〉]; Rv↑; [〈 ∧ ∀b :: ¬R[b]〉]; Rv↓]

The Rv read validity signal is completed across all interface cells in a block in
Program 4.14, and is connected up to the handshake control for this block and
as an output request to the data environment. With the full-buffer reshuffling
on channel R, since Rv↓ (which follows renD↓) is not checked before RC e

i ↑, the
handshake control and read data interface must check renD↓ before requesting the
next input control token with RC e

i ↑ to prevent R↓ from prematurely firing before
it is reset.

The control propagation arrays are similar for read and for writing, as listed in
Program 4.15. We use lockr↑ and lockw↑ to denote the locking actions, and lockr↓
and lockw↓ to denote the unlocking actions. The unlocked conditions correspond
to the conjunctions of the individual lock variables specified in Program D.3. In
Section 4.3.2, we will implement the locking and unlocking actions as production
rules. The control validity completion trees are listed in Program 4.16 — they are
just OR-trees. Without loss of generality, we have written the all control validity
signals in the active-high valid sense (denoted X v) as opposed to the neutral sense
(denoted X n).

Program 4.15 HSE: the register control propagation array (read and write)

REG CTRL PROPread[l] ≡
*[[RCi[l] ∧ renC ∧ 〈unlocked[l]〉]; lockr[l]↑; RCo[l]↑; RC v

o ↑;
[¬renC]; lockr[l]↓; RCo[l]↓; RC v

o ↓
]

REG CTRL PROPwrite[l] ≡
*[[WCi[l] ∧ wen ∧ 〈unlocked[l]〉]; lockw[l]↑; WCo[l]↑; WC v

o ↑;
[¬wen]; lockw[l]↓; WCo[l]↓; WC v

o ↓
]

What remains of the original HSE is the handshake control that coordinates the
communication with the environment via requests and acknowledges. A full-buffer
version of the control is listed in Program 4.17, and a half-buffer version is listed
in Program 4.18. By careful floor decomposition, we have isolated production rule

45

Program 4.16 HSE: completion tree for control propagation array in the read and
write port
REG CTRC ≡

*[[〈∨∀l :: RCo[l]〉]; RC v
o ↑; [〈∧∀l :: ¬RCo[l]〉]; RC v

o ↓]
REG CTWC ≡

*[[〈∨∀l :: WCo[l]〉]; WC v
o ↑; [〈∧∀l :: ¬WCo[l]〉]; WC v

o ↓]

differences between our chosen buffer reshufflings to only the handshake control
quadrant; the other three quadrants are independent of the reshuffling! The read
handshake control takes control validity completion signals RC v

i and RC v
o , a data

validity completion Rv , and internal enable completion renv from Program 4.19 as
inputs from the other quadrants of the read block.

An elegant result of the handshake expansion of Programs 4.5 and 4.6 is that
the data-output acknowledge Re communicates with only the read data interface
array, and that the control-output acknowledge RC e

o communicates with only the
handshake control. Our control-data decomposition allows the control propaga-
tion reset phase and the data interface reset phase to proceed concurrently and
independently of each other. The handshake control needs to check only Rv↑ be-
fore RC e

i ↓ because Rv is sent to the (data receiving) environment as a request
and checked in both directions by Re . Re is, in turn, symmetrically checked by
renD , which is completed with renC at renv . We will show that an advantage to
synchronizing control and data at renv is that renv is off of the critical path.

Program 4.17 HSE: the register read handshake control (full buffer)

REG HSENread ,fullbuf ≡
*[[RC e

o]; renC↑; [RC v
o ∧ RC v

i ∧ renv ∧ Rv]; RC e
i ↓;

[¬RC e
o]; renC↓; [¬RC v

i ∧ ¬renv]; RC e
i ↑; [¬RC v

o]

]

Program 4.18 HSE: the register read handshake control (half buffer)

REG HSENread ,halfbuf ≡
*[[RC e

o]; renC↑; [RC v
o ∧ RC v

i ∧ renv ∧ Rv]; RC e
i ↓;

[¬RC e
o]; renC↓; [¬RC v

o ∧ ¬RC v
i ∧ ¬renv]; RC e

i ↑
]

Program 4.19 HSE: completion tree for ren signals in read port

REG CTren ≡
*[[renC ∧ 〈∀b :: renD[b]〉]; renv↑; [¬renC ∧ 〈∀b :: ¬renD[b]〉]; renv↓]

46

We summarize the responsibilities of each block in the remainder of this subsec-
tion by describing sequences of events that need to be enforced by the composition
of the individual quadrants. We describe actions that are ordered by the ‘mini-
handshakes’ between neighboring quadrants.

Cell array to read data interface array. The cell array communicates
the register value to the interface on the R inverted data rails when renD is
high. R is reset by ¬renD . Together, the handshake control and interface ar-
ray must guarantee the following total order of events (for both reshufflings):
*[renD↑; R↓; renD↓; R↑]. The cell production rule for R↓ is guarded by renD ,
which enforces the first order relation. The second ordering is enforced by: R↓ ≺
Rv↑ ≺ (RC e

i ↓,Re↓) ≺ renD↓. The third ordering is satisfied by the production rule
¬renD 7→ R↑. The final ordering will be enforced by: R↑ ≺ Rv↓ ≺ Re↑ ≺ renD↑.

One crucial requirement, which places a constraint on the production rules, is
that the renD signal which is completed into renv must be the same renD signal
that is connected across the register cell array, not an amplified copy thereof,
because the handshake control uses ¬renv to guarantee that all renDs have reset
and therefore cut-off the R↓ actions. In other words, the renD↑ and renD↓ actions
must remain atomic. Otherwise, renv cannot guarantee that R↓ actions have been
cut-off before requesting the next input token with RC e

i ↑ without an additional
timing assumption. Failure to guarantee this can lead to violations of word select
exclusion and idempotence.

Cell array to control propagation. There are no communication actions
between the cell array and the control propagation array. Both arrays share the
read word line signals RCi[l] as inputs, therefore the handshake control needs to
guarantee that the input completion signal, RC v

i , is checked before RC e
i , i.e., that

RC v
i ↑ ≺ RC e

i ↓ and RC v
i ↓ ≺ RC e

i ↑.

Read data interface array to handshake control. The data interface
array communicates the completion signals Rv and renv to the handshake control,
while the handshake control communicates RC e

i to the interface array and the
successor block. The actions of renv and RC e

i are ordered by the conjunction of
the following cycles:

1. RC v
i ↑ ≺ RC e

i ↓ ≺ RC v
i ↓ ≺ RC e

i ↑ ≺ RC v
i ↑

2. renv↑ ≺ RC e
i ↓ ≺ renD↓ ≺ renv↓ ≺ RC e

i ↑ ≺ renD↑ ≺ renv↑

3. renv↑ ≺ RC e
i ↓ ≺ renC↓ ≺ renv↓ ≺ RC e

i ↑ ≺ renC↑ ≺ renv↑

Since renD directly guards the production rules for R↓ and renC guards the firings
of RCo , the ¬renv guard for RC e

i ↑ guarantees that the same control token will not
cause R and RCo to fire more than once, i.e., each input token is idempotent.

Handshake control to control propagation. The handshake control for the
read port sends renC to the control propagation array, which eventually responds

47

through RC v
o . Both buffer reshufflings impose the following ordering: renC↑ ≺

RC v
o ↑ ≺ RC e

o ↓ ≺ renC↓ ≺ RC v
o ↓ ≺ RC e

o ↑ ≺ renC↓.
The floor decomposition can be applied to the terminal read port block in a

similar fashion. The register cell array and the data interface array are identical
to those of the non-terminal blocks, because the data functionality is the same.
The first difference is that there is no control propagation array quadrant. The
handshake control quadrant is much simplified after the output control handshake
is eliminated from the HSE in Program 4.17. The resulting HSE is shown in
Program 4.20.

Program 4.20 HSE: the terminal block’s read handshake control

REG HSENread ,last ≡
*[[RC v

i ∧ renv ∧ Rv]; RC e
i ↓; [¬RC v

i ∧ ¬renv]; RC e
i ↑

]

We finish deriving complete production rules for the core read port in Sec-
tion 4.3.

4.2.2 Decomposed Writing

read/write
interface
array

handshake
control

cell array
register data

control propagation array

WCo

WCiWCv
i

WCe
i

WCv
o

wv

W

WCe
o

W e

W

wen

WCv
o

wvc

Figure 4.8: Floor decomposition of a write port block, shown with channel signals and
some internal signals at component boundaries

48

HSE 4.9 decomposition

Fig. 4.11
PRS H.1
HSE 4.24

HSE 4.15
PRS H.8
Fig. 4.13

Fig. 4.14

HSE 4.23
PRS H.18

HSE 4.25
PRS H.27
Fig. 4.17

Figure 4.9: Floor decomposition of a
PCEVFB write port

HSE 4.10 decomposition

Fig. 4.11
PRS H.1
HSE 4.24

HSE 4.15
PRS H.8
Fig. 4.13

Fig. 4.14

HSE 4.23
PRS H.18

HSE 4.26
PRS H.28
Fig. 4.18

Figure 4.10: Floor decomposition of a
PCEVHB write port

The core write port is floor-decomposed in the same manner as the read port.
Figure 4.8 shows the relative placement of channel signals and internal nodes at the
boundaries of the floor decomposition components. Figures 4.9 and 4.10 outline
the steps that follow in synthesizing production rules from the full-buffer and half-
buffer handshaking expansions of the core write port. First we extract the writing
of the data to a register into a cell component, listed in Program 4.21. Each cell
in the array takes a write word line WCi[l] and core data Wi[b] as input. The
wv[b] signals indicate when the write to a bit cell is finished. Each wv[b] is

reset (high) after the input bit rails return to their neutral state. All wv[b]’s for
each block are completed together in the completion tree in Program 4.22. Since
resetting wv[b]↑ is independent of the select line, we can move the reset action to
the write data interface in Program 4.23. What remains in the cell is Program 4.24,
which can be easily implemented with mostly NFETs. We derive the cell-writing
production rules in Section 4.3.1.

wvc signals the completion across all wv[b]s for a single block in Program 4.22.
Note that wvc is not shared with the environment, so no input validity W v is
needed from environment data sender.

Program 4.21 HSE: the register write cell array component

REG DATAwrite[b, l] ≡
*[[WCi[l] ∧Wi[b]]; 〈write[b, l]〉; wv[b]↓; [¬Wi[b]]; wv[b]↑]

Program 4.22 HSE: completion tree for wvc in read port

REG CTwvc ≡
*[[〈 ∧ ∀b :: ¬ wv[b]〉]; wvc↑; [〈 ∧ ∀b :: wv[b]〉]; wvc↓]

49

Program 4.23 HSE: resetting the write validity bitline

REG INTRFCwrite[b] ≡
*[[¬Wi[b]]; wv[b]↑]

Program 4.24 HSE: the register write cell array component (set-only)

REG DATAwrite[b, l] ≡
*[[WCi[l] ∧Wi[b]]; 〈write[b, l]〉; wv[b]↓; [wv[b]]]

The write control propagation array is nearly identical to that of the read
control and is listed in Program 4.15. Again, the implementation of the locking
scheme is isolated in the control propagation array and has no effect on any other
quadrant. The write control signals are completed in an OR-tree as shown in
Program 4.16. WC v

o serves as the output validity for this control block and as a
input validity to the successor block.

Program 4.25 HSE: the register write handshake control (full buffer)

REG HSENwrite,fullbuf ≡
*[[WC e

o]; wen↑; [WC v
o ∧WC v

i ∧ wvc]; WC e
i ↓;

[¬WC e
o]; wen↓; [¬WC v

i ∧ ¬wvc]; WC e
i ↑; [¬WC v

o]

]

Program 4.26 HSE: the register write handshake control (half buffer)

REG HSENwrite,halfbuf ≡
*[[WC e

o]; wen↑; [WC v
o ∧WC v

i ∧ wvc]; WC e
i ↓;

[¬WC e
o]; wen↓; [¬WC v

o ∧ ¬WC v
i ∧ ¬wvc]; WC e

i ↑
]

Finally, the handshake controls for the write port, which communicates with the
write data environment and successor and predecessor control blocks via request
and acknowledge, are listed in Programs 4.25 (full-buffer version) and 4.26 (half-
buffer version). Recall that WC e

i acknowledges both the predecessor block and
the data sender (W e

i). WC v
i is the incoming validity from the predecessor block.

Again, the choice of reshuffling only affects the handshake control quadrant, and
does not affect the specification of the other three quadrants.

We summarize the communication interfaces and responsibilities between the
various floor-quadrants of the write port.

Cell array to write data interface. The data interface itself does little work
other than reset the bit-validity wv[b] and complete wvc. Since each cell in the
array takes WCi[l] and Wi[b] as input, the handshake control must synchronize
the input control and data tokens so that each token is consumed exactly once.

50

From Programs 4.9 and 4.10, the second parts are implemented by the cell and
data interface array. The handshake control part guarantees that WCi cannot
remain active for the duration of more than one data token Wi because the shared
acknowledge WC e

i (≡W e
i) always waits for [¬WCi ∧ ¬wvc]. The conjunction of

the following orderings guarantees the idempotence and synchronization between
control and data tokens:

1. wvc↑ ≺WC e
i ↓ ≺ wvc↓ ≺WC e

i ↑ ≺ wvc↑

2. WC v
i ↑ ≺WC e

i ↓ ≺WC v
i ↓ ≺WC e

i ↑ ≺WC v
i ↑

Cell array to control propagation. The cell array and control propagation
array do not communicate any signals with each other, but they share the input
control WCi . Again, the handshake control guarantees that the use of an input
control token is synchronized.

Write data interface to handshake control. The data interface only com-
municates wvc to the handshake control, but the handshake control communicates
no signal to the data interface.

Handshake control to control propagation. The handshake control and
control propagation array communicate a 4-phase handshake with wen and WC v

o .
Together with the output acknowledge, WC e

o , they enforce the ordering: wen↑ ≺
WC v

o ↑ ≺WC e
o ↓ ≺ wen↓ ≺WC v

o ↓ ≺WC e
o ↑ ≺ wen↑.

The terminal write port block is floor-decomposed similarly. The register cell
and data interface array are identical to those of the non-terminal blocks, and there
is no control propagation array. The handshake control quadrant is much simplified
after the output control handshake is eliminated from the HSE in Program 4.25.
The resulting HSE is shown in Program 4.20.

Program 4.27 HSE: the terminal block’s write handshake control

REG HSENwrite,last ≡
*[[WC v

i ∧ wvc]; WC e
i ↓; [¬WC v

i ∧ ¬wvc]; WC e
i ↑]

In this section, we have described in detail the process of partitioning actions
of a handshaking expansion into a floor decomposition, which is an intermediate
step in translating a process (with a chosen template handshaking expansion) into
production rules. While this step is not altogether necessary for synthesis, it is used
here as an aid to help the reader visualize the mapping of a process to its physical
implementation. In the interest of exploring many variations of the register core,
we have identified the components that are subject to change as we apply different
optimizations. It is to our advantage that we can modularly modify individual
quadrants without affecting the correctness of a design, as long as we preserve
orderings of actions across the interfaces. We show the production rules for the
read and write port in Section 4.3.

51

4.3 Production Rule Synthesis

Now we take each of the quadrants of the floor decompositions described in the
previous section and translate them into production rules for circuits.

4.3.1 Core Register Cells

Figure 4.11 shows our QDI read-write register cell. The production rules for this
cell are identical to that used in the MiniMIPS [31]. None of the variations in the
remainder of this thesis modify the register cell. The production rules are also
listed in Program H.1.

Fig. 4.4

WCi

x0x1

W 0 W 1

RCi
R0 R1

renD

x0 x1

x0

W 0

wv

W 1

x1

WCi

Figure 4.11: QDI Register core cell. Only one read and one write port are shown.

Storage. Each register cell stores one bit of data. The bit is stored internally
as a pair of cross-coupled inverters. The only PFETs in the register cell are the
pull-ups of the coupled nodes, which we denote as x 0 and x 1. Since we do not care
how the values are initialized on power-up, we omit reset circuitry.

Reading. The read output for each port of the cell is the active-low dual-rail
channel R. ren acts as the bit line enable, and RCi is the register line select.
The production rules for R0↓ and R1↓ are exclusively NFETs. Each read port
contributes one register (word) select wire-track and three bit wire-tracks.

Writing. The write input for each port to the cell is the active-high dual-rail
channel W , and the register line select WCi . The QDI register cell is larger than
a typical synchronous register cell because of both the dual-rail encoding and the
additional circuitry to detect write completion, wv . With the exception of the
cross-coupled inverters, the production rules for writing to x 0, x 1, and wv all
use NFETs. Each write port contributes one register (word) select wire-track and
three bit wire-tracks.

Register Zero. The hard-wired register zero requires no storage, and only
requires a circuit for pulling down the R0 rail for reading. A write to the zero
register is non-modifying, and just immediately returns with wv↓. The production
rules for the zero register cell are listed in Program H.2.

52

While the area per port of our QDI register cell is larger than that of most
traditional synchronous register cells, all register cells scale linearly in both di-
mensions by the number of ports, hence quadratically overall. The area of heavily
ported register cells is dominated by wires, not gates, therefore the traditional area
models for synchronous register files also applies here, but with a different number
of wire tracks per port. For comparison, the register cell presented by Tseng [50]
is most similar to ours because both read and write data lines are dual-rail. Their
cell has fewer transistors because they use a pass-gate transformation to convert
the write bit lines to active-low. Zyuban and Kogge’s model for register file en-
ergy complexity models cell ports as having a dual-rail write and monorail read
line [57,58]. Rixner, Dally, et al. model register cells with the minimal single tran-
sistor and single bit line per (unified read-and-write) port [42]. The area, energy,
and delay models for register arrays mentioned in Section 1.1.2 apply the same
way to our QDI register core, but with more wire tracks per port.

Beyond the scope of this thesis, but worth exploring, are many possibilities for
non-QDI register files that can take advantage of various (smaller) cells and analog
circuit techniques for reducing energy by carefully adding timing assumptions.

4.3.2 Control Propagation

The read and write control propagation for the base design core are unconditional
and independent of data. We translate the generalized lock condition from Pro-
grams D.4 and D.5 into additional guards on the production rules for RCo↓ and
WCo↓. We observe that these inverted outputs themselves can be used as the lock-

ing variables rx and wx (in the inverted sense)! This makes the production rules
for locking very convenient, because we do not need to introduce any additional
nodes. The locking guards guarantee mutual exclusion between output controls
RCo and WCo and between multiple WCos. Read-write and write-write exclusion
on the controls guarantees exclusive access to the x 0 and x 1 shared internal state
variables in the register cells. A nice result of this floor decomposition is that the
implementation of the locking scheme only affects the control propagation array;
the handshake control quadrant is entirely independent of the locking scheme.

Figures 4.12 and 4.13 show the precharge-domino circuitry for pipeline-locked
unconditional control propagation for 2-read, 2-write ported registers. The PRSs
are also listed in Programs H.7 and H.8. It is clear from the PRS that the verti-
cal latency per stage of control propagation is only two gate delays through the
precharge stack.

The validity signals RC v
o and WC v

o are computed using OR-trees. For a bank
of 32 registers, we use a 4-level tree of NOR2-NAND4-NOR2-NAND2, starting
with RCo[0..31] and WCo[0..31].2

2 A non-QDI completion tree could start completing across RCo and WCo , as long
as the output driving inverter is faster than the completion tree, i.e., the output of the
completion trees guarantee, by timing assumption, the validity of the control rails.

53

(locks)

Fig. 4.4

RCo[0] RCo[1]

RCo[1]RCo[0]

WCo[0]

WCo[1]

renC [0]

RCi[0]

renC [0]

renC [1]

RCi[1]

renC [1]

Figure 4.12: Pipeline-locked read
control propagation, shown for two
ports.

(locks)

Fig. 4.4

WCo[1]WCo[0]

wen[1]

RCo[1]

RCo[0]

WCo[1]WCo[0]

wen[0]

WCi[0]

WCo[1]

wen[0]

WCi[1]

wen[1]

WCo[0]

Figure 4.13: Pipeline-locked write control
propagation, shown for two ports.

4.3.3 Data Interface Cell

The read and write data interface cell is illustrated in Figure 4.14, and the pro-
duction rules are also listed in Program H.18.

Fig. 4.4

Re

renD

RCei

renD

renD

C

renD

rv

R1

R0

R1

R0

W 1

W 0

wv wv

Figure 4.14: Read and write data interface for a single port of a bit line (resets are not
shown)

Reading. The ¬renD reset of R↑ complements the pull-down inside the regis-
ter cell. Completion detection on channel R begins after the output inverters with

54

a 2-input NOR gate.3 The C-element combines the acknowledges Re and RC e
i

which guarantees correct ordering of the full-buffer and half-buffer handshaking
expansions. renD , which has a large load across the register cell array, is driven by
a high-gain inverter.

Writing. The write interface production rule is a simple pull-up on wv when
the input data W is neutral. wv is then checked by the completion tree for wvc.

One can visualize the relative placement of a row of the register cell array to
the right of the interface cell, and the block-wide completion trees for wv , rv , and
renD to the left of the interface cell array, as shown in Figure 4.4. The completion
trees are just two- or three-level trees of C-elements.

4.3.4 Handshake Control

For our core base designs, we consider the full-buffer and half-buffer reshufflings of
the read and write ports. We show the production rules for the handshake controls
and point out the differences between the two reshufflings.

Full-buffered reading. (Program H.20, Figure 4.15)
We derive stable production rules from the partial handshaking expansion given
in Program 4.17. The actions for renC are symmetrically guarded by the input
and output acknowledges RC e

i and RC e
o . renC is then checked by the control-

data enable completion, renv . renv and RC v
i symmetrically guard RC e

i . The
full-buffered reshuffling allows RC e

i ↑ (request for next input) before the output is
reset, ¬RC v

o . ¬renv guarantees that renC and all renD have reset so that no RCo

and R can fire again until the output receivers have reset their acknowledges Re

and RC e
o . ¬RC v

o is checked symmetrically by the successor’s acknowledge, RC e
o ,

and Rv is checked symmetrically by the data receiving environment, so there is no
need to check them again locally.

Half-buffered reading. (Program H.21, Figure 4.16)
Stable production rules for the half-buffer reshuffling are similarly derived from the
partial handshaking expansion in Program 4.18. Recall that we have chosen to keep
the data communication full-buffered so we need not wait for data neutrality ¬Rv

before requesting the next control input. The only significant difference from the
full-buffer is that the control output neutrality ¬RC v

o is checked before requesting
the next input control token with RC e

i ↑, which is a difference of a single PFET.

Terminal Reading Block. (Program H.26)
The production rules for the terminal block’s read port are trivial from the HSE
in Program 4.20.

Full-buffered writing. (Program H.27, Figure 4.17)

3 A non-QDI detection could start completing on R using a NAND gate with the
conservative timing assumption that the output inverters reset low faster than the com-
pletion tree resetting, i.e., that output neutrality “guarantees” the data rails have reset.

55

Fig. 4.4

RCei

RCeo

renv

RCvi

RCvo

Rv

RCvi

renv

renC

renC

C

Figure 4.15: Read handshake control for
full-buffered unconditional control propa-
gation. (resets are not shown)

Fig. 4.4

renv

RCvi

RCvo

RCvo

Rv

RCvi

renv

RCeo

RCei

renC

renC

C

Figure 4.16: Read handshake control for
half-buffered unconditional control propa-
gation. (resets are not shown)

We derive stable production rules for the full-buffer write port handshake control
from the expansion in Program 4.25. The firings of wen are symmetrically guarded
by the input and output acknowledges WC e

i and WC e
o . Input data and control

validity wvc and WC v
i are both checked symmetrically before WC e

i fires. Since
¬WC v

o is not checked before requesting the next input token with WC e
i ↑, we need

to check wen symmetrically before WC e
i to guarantee that each input token is

used and acknowledged exactly once. Otherwise, if wen remains high (reset low
too slow) during the reset phase, another input token may come along and cause
another WCo↑ to fire (and possibly WC v

o) which is a violation of exclusion on the
use of the shared data channel W .

Half-buffered writing. (Program H.28, Figure 4.18)
We derive stable production rules for the half-buffer write port handshake con-
trol from the expansion in Program 4.26. The first difference from the full-buffer
reshuffling is that ¬WC v

o is checked before requesting the next input with WC e
i ↑.

The symmetric guard of WC v
o enforces the ordering wen↑ ≺ WC v

o ↑ ≺ WC e
o ↓ ≺

wen↓ ≺ WC v
o ↓ ≺ WC e

o ↑ ≺ wen↑. Therefore, wen need not guard WC e
i to guar-

antee idempotence and exclusion.

Terminal Reading Block. (Program H.26)
The production rules for the terminal block’s write port are trivial from the HSE
in Program 4.27.

56

Fig. 4.4

wen

WCvi

wvc

WCvo

wvc

WCvi

wen
WCeo

WCei

wen

wen

C

Figure 4.17: Write handshake control for
full-buffered unconditional control propa-
gation. (resets are not shown)

Fig. 4.4

WCvi

wvc

WCvo

WCvo

wvc

WCvi

WCei

WCeo

wen

wen

C

Figure 4.18: Write handshake control for
half-buffered unconditional control propa-
gation. (resets are not shown)

4.3.5 Circuit Variations and Optimizations

The production rules we have just described are not exactly the ones we imple-
mented and for which simulation results are presented. There is a class of circuit
optimizations we used to modify the completion of validity signals, which reduces
the transistor stacks on RC e

i and WC e
i without increasing the number of tran-

sitions per cycle. For fairness of comparison of the actual implementations, we
applied these transformations uniformly to all versions of the read and write ports
circuits presented in this thesis. However, we list the original derived production
rules in Appendix H because they correspond exactly to the partial handshaking
expansions from the floor decompositions of the read and write ports, and hence,
are easier to understand. Knowledge of these circuit optimizations is not crucial
to understanding this thesis. We describe the circuit optimizations in full detail in
the technical report [11].

4.4 Banking

Before we present the results of the base design register cores, we describe the
impact of banking the register core on the BYPASS and CONTROL components
of the register file. As memory structures such as register files, SRAMs, and
DRAMs increase in the number of bits and words, access times slow down due to
increased capacitive load on shared bit lines and word select lines. In Chapter 3, we
alleviated the load on shared word lines with vertical pipelining. The traditional
solution for reducing load on bit lines is banking, splitting an array into sub-arrays.

57

In Chapter 9, we describe a different type of partitioning that has non-uniform
access times.

4.4.1 Related Work

Many modern SRAMs and DRAMs are heavily banked to support fast access
times. Banking also enables rapid concurrent access to different banks, which can
be leveraged by non-conflicting sequential memory access patterns, as is often used
with signal processing applications [21]. Banking can offer excellent average-case
performance and has been demonstrated in an asynchronous DRAM design [10].

As superscalarmicroprocessors exploit greater and greater instruction-level par-
allelism (ILP), the number of registers required to support in-flight instructions
increases, as does the number of ports required to support wider issue [12, 18, 52].
From Section 1.1.2, we have seen models of how performance and energy of regis-
ter files scale with size, and how larger register files can severely limit cycle times.
Modern processors bank their register files to make sure their access times meet
critical path timing requirements [20, 37, 45, 55]. Banking register files provides
an alternative to adding more read and write ports to the register cells, which
helps especially when accesses to different banks are (statically or dynamically)
scheduled together.

While our register control allows concurrent accesses to different ports, it cannot
issue simultaneous accesses to different banks of the same port. This is only a
limitation of our control specification, which is guided by the number of buses on
the datapath. Other architectures may be able to take advantage of multiple banks
and multiple ports by scheduling (statically or dynamically) concurrent read and
write accesses to different banks of each port, and multiply the number of effective
ports when banks do not conflict. Nonetheless, even for a single-issue in-order
processor, banking still offers an improvement in performance and reduction in
energy in the core.

4.4.2 Core Banking

Aside from speeding up access times, an additional motivation for banking our
register core is that the read and write cycle time of a block of 4 bits by 32 registers
is limited by the control handshake cycle, which includes the time of setting and
resetting through the control propagation arrays’ completion trees. Recall that for
a bank of 32 registers, we completed the validity in a four-stage OR-tree.

When we bank the CORE process, all we do is duplicate each core process, and
halve the number of registers in each bank. Figure 4.20 illustrates the schematic
for dual-banked register core read and write operation. The only change that this
may introduce is that the sense of the control propagation completion signals RC v

and WC v may become inverted to active-low RC n or WC n signals.4

4 Production rules for the active-low validity reshufflings (PCENFB and PCENHB)

58

(a) non−banked (b) banked

Figure 4.19: Banking the register file is a common method for reducing access energy
and delay by reducing the load on bit lines

(a)

[t
o

re
ad

 b
yp

as
s]

[f

ro
m

 w
ri

te
 b

yp
as

s]

(b)

 W [hi]

W [hi]

WCo[hi]

WCi[hi]
WCo[hi]

WCi[hi]

W [lo]

W [lo]

WCi[lo]

WCo[lo]
WCi[lo]

WCo[lo]

RCi[lo]

RCo[lo]

RCi[lo]
RCo[lo]

R[lo]

R[lo]

RCo[hi]

RCi[hi]
RCo[hi]

RCi[hi]

R[hi]

R[hi]

Figure 4.20: Block diagram of vertically pipelined, banked read and write processes.
For the 32 register architecture, the lo bank contains registers 0 through 15, and the hi
bank contains registers 16 through 31.

For our study, we divide the register core into two symmetric banks. In general,
one could divide the register file into any number of banks, at the cost of adding
the hardware for control (the handshake control and data interface array) for each
bank. The speedup gained by banking diminishes as the number of banks increase

for all handshake control circuits appear in the Appendix of the technical report [11],
but are omitted from this thesis. For this thesis, we just add inverters to force the shared
validity signals to be active-high.

59

and size of each bank decreases. Let us not forget that each bank that we introduce
adds a set of channels, which needs to be multiplexed or de-multiplexed by the
bypass interface to the operand buses. Now we need to modify the read and write
bypasses to accommodate the channels for each bank.

4.4.3 Bypass Banking

Figure 4.21 illustrates the new decomposition of the BYPASS for a dual-banked
register file. For comparison, the original BYPASS for the unbanked register
core is shown in Figure 2.6. The bypass forwarding channels BPZX [0..1] and
BPZY [0..1] remain the same as before, but the number of channels between the
core and bypasses have doubled. The CHP modifications that are introduced as a
result are very simple.

RPORT

RPORT
[0,hi]

BPZ[1]

BPZ[0]

lower core bank upper core bank

Z[0]

WPORT
[1,lo]

WPORT
[0,lo]

RPORT
[1,lo]

RPORT
[0,lo] BPX

Z[1]

X Y

BPY

WPORT
[1,hi]

WPORT
[0,hi]

[1,hi]

Figure 4.21: Bypass decomposition for dual-banked register core. Control channels are
not shown.

Recall that the read bypass is just a controlled merge process from Program B.2.
Each bank adds another channel from which a source operand may be read, so
naturally, we just add one more case to the merge, which results in Program B.9.
BPX and BPY now communicate core[lo] or core[hi] to distinguish between
the upper and lower banks of the respective read ports. A heavily banked design
might use a multi-stage merge if a single-stage N -way merge becomes too slow.

The original writeback-bypass, Program B.1, is a controlled conditional copy.
We modify the case that conditionally writes back to the core to split the data to
one of the banks of each write port. The resulting CHP is Program B.10. Channels
BPWB[0..1] now communicate one of three values: lo or hi to copy a value to a
bank of a write port, or false to discard a value.

60

Throughout the remainder of the thesis, we will show that banking the CORE
and BYPASS can be easily adopted in conjunction with other transformations.
The resulting transformed bypasses still fit into well-known function templates,
thus, QDI production rule synthesis is straightforward.

4.4.4 Control Modifications

The last step is to direct bank accesses in the CONTROL. We have essentially
moved part of the register index demuxing into the control process. We change the
communication actions on BPX and BPY from Program C.1 to be conditional on
the value of the respective indices rs and rt , which results in CHP Program C.4.

For the writeback bypass control, after we change the BPWB communication
to be conditional on the bank index, the result is Program C.5.

Obviously, if we encode the index channels (range 32) in binary, we can use
a dual rail to distinguish between banks; comparator logic is unnecessary in the
bypass controls. A result of decoding the bank outside of the core is that the each
core bank’s demux will be simplified and faster.

Again this slight modification in the CONTROL is compatible with the trans-
formations introduced in the later Chapters. Synthesis of QDI production rules
follows from straightforward application of known function templates.

4.5 Results

Here we present the performance and energy results for our base design register
core, a 32-bit x 32-word bank pipelined vertically into 4-bit blocks, and for the
16-word, banked version, both laid out in TSMC .18µm technology. We used the
same layout in both designs without resizing transistors to equalize path delays.
The layout dimensions of the various components, labeled in Figure 4.4, are listed
in Table 4.1. The height of the base design’s control propagation cell is ycpstd .

Table 4.1: Layout component dimensions, corresponding to Figures 4.4 and 9.2.

dim. λ λ/xcell dim. λ λ/ycell

xcell 65 1.00 ycell 210 1.00
xpi 268 4.12 ycpstd 380 1.81
xvt 109 1.68 ycpWAD

401 1.91
xni 240 3.69 yht 140 0.67

For comparison, the Caltech MiniMIPS was not banked, used a block granu-
larity of 8-bits, and was designed in HP’s .6µm CMOS process from MOSIS [31].
From spice simulations, the MiniMIPS was anticipated to operate at 280 MHz
and 4 W at 3.3 V, and was projected to operate at 560 MHz and 2.4 W with HP’s
.18µm process at 1.8 V [32].

61

We simulated the core circuits for 25 ns using a variant of spice.5 Since we
measure energy by linearly interpolating the average rate at which charge flows
from the power supply, there will be some miniscule numerical error. The timing
measurements have been validated for the targeted technology. The number of
transitions per cycle, measured with prsim is the number of signal inversions in a
control handshake assuming unit gate delays, and is only meant to give a rough
estimate of performance. The frequency (or throughput) is simply the reciprocal
of the cycle time. The energy we report in all tables is the amount of energy
dissipated per iteration per block. It is important to note that energy reported for
the banked designs only includes the energy consumed by a single bank, and does
not include the static energy consumed by the other bank.

Another important metric for performance is the latency of port operations.
For read ports, the read latency is the measured delay from bit line enable (renD)
and word line select (RCi) to data output (Ro↑). Shorter read latency allows
functional units to receive inputs earlier and produce outputs earlier (especially
in asynchronous systems) and also reduces the branch mispredict penalty. Write
latency is a delay that matters only to asynchronous write ports that use a write
validity signal to detect write completion (as opposed to using delay assumptions).
Write latency is measured as the delay from write bit line (W) and write word
line (WCi) to write validity (wv↓), which depends on whether or not the internal
cross-coupled inverters are toggled. Since we simulate maximum write switching,
the write latencies we report include the toggle-time and the time for the validity
signal.

In addition to performance and energy, we also compute the voltage-invariant
metric Eτ 2, which quantifies energy efficiency [49]. A system with a lower Eτ 2

is superior in performance compared to one with higher Eτ 2 when operating at
equal energies by voltage-scaling, and is also lower in energy when throughputs are
equalized by voltage-scaling.

We expect the most significant speedup to come from the reduction in load on
the shared bit lines R, renD , W , and wv , which were among the slowest observed
critical transitions in the non-banked designs. The control completion trees for
RC v

o and WC v
o are implemented as three-stage, 16-input OR-tree with a fourth

stage inverter to correct the sense of the validity signal, which has the same depth
as the four-stage, 32-input OR-tree, so the number of inverter transitions per cycle
remains the same. However, the reduced path effort will result in slightly reduced
delay.

Since the majority of energy per block is consumed by the data components of
the read and write ports, halving the number of sharers on all bit lines (by banking)
results in a significant reduction in dynamic energy based on reduced capacitance,
and also reduces the substrate leakage current in the NMOS-dominant register cell

5 The absolute energies reported by our simulator have not been validated and are
in fact much higher than the expected energies for this technology, however the relative
energies, which are more important to this thesis, are valid.

62

array, and hence, reduce static power dissipation.

4.5.1 Reading

Table 4.2: Read-access performance and energy comparisons for the base design register
file, for a block size of 4 bits x 32 registers

trans./ cycle freq. latency energy/cycle Eτ 2

buf
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

half 22 1.953 512.2 26.90 102.5
full 20 1.862 537.0

0.323
26.59 92.2

Table 4.3: Read-access performance and energy comparisons for a register bank with a
block size of 4 bits x 16 registers

trans./ cycle freq. latency energy/cycle Eτ 2

buf
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

half 22 1.821 549.1 15.92 52.8
full 20 1.698 588.8

0.222
15.78 45.5

Since the read port is dual-railed and hence symmetric, the value being read
has no impact on the cycle time and energy. In analog simulation, we allow the
internal cross-coupled bits to reset randomly by metastability. Tables 4.2 and 4.3
list the simulation results for the full-buffer and half-buffer reshufflings of the core
read port. These results also appear in Table J.2 for comparison with the other
read port variations presented throughout the thesis. Table J.4 compares the
performance and energy of half-buffered and full-buffered read ports across the
entire design space. The register cell and interface arrays are same for full and
half-buffers, hence, the read latencies are the same.

Comparing reshufflings: unbanked, 32 registers. The full-buffer reshuf-
fling is only 4.9% faster than the half-buffer version and consumes only 1.1% less
energy per iteration than the half-buffer version. Overall, the full-buffer read port
is 11.2% more energy-efficient than the half-buffer read port.

Comparing reshufflings: banked, 16 registers. The full-buffer reshuffling
is only 7.2% faster than the half-buffer version and consumes only 0.9% less energy
per iteration than the half-buffer version. Overall, the full-buffer read port is 16.0%
more energy-efficient than the half-buffer read port.

Comparing bank sizes: half-buffer reshuffling. For the half-buffer reshuf-
fling, reducing the bank size from 32 to 16 results in a 7.2% speedup in cycle time,

63

40.8% reduction in energy per cycle per block, which amounts to a 94.2% improve-
ment in energy efficiency.

Comparing bank sizes: full-buffer reshuffling. For the full-buffer reshuf-
fling, reducing the bank size from 32 to 16 results in a 9.6% speedup in cycle
time, 40.7% reduction in energy per cycle per block, which amounts to a 102.7%
improvement in energy efficiency.

The most significant improvement in performance is the reduced read latency,
which is 0.686 of the unbanked design’s read latency, a reduction of about 100
ps. For larger, and more heavily-ported register banks, the benefit of banking is
expected to increase dramatically.

4.5.2 Writing

Table 4.4: Write-access performance and energy comparisons for the base design register
file, for a block size of 4 bits x 32 registers

trans./ cycle freq. latency energy/cycle Eτ 2

buf
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

half 22 2.488 402.0 27.81 172.1
full 20 2.444 409.2

0.528
27.45 163.9

Table 4.5: Write-access performance and energy comparisons for a register bank with a
block size of 4 bits x 16 registers

trans./ cycle freq. latency energy/cycle Eτ 2

buf
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

half 22 2.179 458.9 11.23 53.3
full 20 2.118 472.1

0.417
11.30 50.7

In simulating the write port (both digitally and analog), we wrote alternat-
ing ones-complement values to the core. Recall that a bit-toggling write to a
register cell takes two more transitions than a non-toggling write. Since the write-
validity signals are all checked through a completion tree, at least one bit-flip in a
block is required to achieve the reported cycle times, which is reasonably probable.
However, the energies reported for writing are worst-case figures because energy
depends on the writing activity factor.

Tables 4.4 and 4.5 list the simulation results for the full-buffer and half-buffer
reshufflings of the core write port. These results also appear in Table J.12 for com-
parison with the other write port variations. Table J.15 compares the performance

64

and energy of half-buffered and full-buffered write ports across the entire design
space. The register cell and interface arrays are same for full and half-buffers,
hence, the write latencies are the same.

Comparing reshufflings: unbanked, 32 registers. The full-buffer reshuf-
fling is only 1.8% faster than the half-buffer version and consumes only 1.3% less
energy per iteration than the half-buffer version. Overall, the full-buffer read port
is 5.0% more energy-efficient than the half-buffer write port.

Comparing reshufflings: banked, 16 registers. The full-buffer reshuffling
is only 2.9% faster than the half-buffer version and consumes only −0.6% less
energy per iteration than the half-buffer version. Overall, the full-buffer read port
is 5.2% more energy-efficient than the half-buffer write port.

Comparing bank sizes: half-buffer reshuffling. For the half-buffer reshuf-
fling, reducing the bank size to 16 results in a 14.2% speedup in cycle time, 59.6%
reduction in energy per cycle per block, which amounts to a 222.6% improvement
in energy efficiency.

Comparing bank sizes: full-buffer reshuffling. For the full-buffer reshuf-
fling, reducing the bank size from 32 to 16 results in a 15.4% speedup in cycle
time, 58.8% reduction in energy per cycle per block, which amounts to a 223.4%
improvement in energy efficiency.

The write latency of the banked write port is 0.686 of the unbanked write port’s
write latency, a reduction of about 110 ps. For larger, and more heavily-ported
register banks, the benefit of banking is expected to increase dramatically.

4.6 Summary

In this chapter, we have worked through a step-by-step synthesis of the read and
write port circuits for a pipelined register file. The transformations presented in
the remainder of the thesis make use of the floor decompositions in this chapter
by introducing minor modifications in very few components. We have presented
simulation results for the non-banked and banked designs of the register core.
Banking is clearly beneficial to improving performance and reducing energy, as
long as the resulting modifications in the CONTROL and BYPASS are not limited
by the interconnect complexity that arises from the increased number of channels.

The circuits derived in the remainder of the thesis will be presented in less
detail because they follow the same principles we have used in this chapter. The
results from this chapter will serve as the baseline for comparisons with other
transformations and optimizations presented throughout the thesis.

Chapter 5

Width Adaptivity

In this chapter, we encode the numbers communicated on the datapath and stored
in the register file using a width-adaptive representation. This change is motivated
by the observation that numbers in a CPU core require on average far fewer bits
to represent than the full-width of the datapath. We can leverage this fact to
reduce the amount of switching activity (and hence energy) on a CPU datapath
by compressing the representation of leading zeros and ones on the datapath with
a width-adaptive datapath (WAD) representation [25].

The high-level CHP program transformations we have used were independent of
the numerical encoding in the datapath. When we vertically pipelined the register
core and bypass in Chapter 3, we exposed the full-width of the datapath in defining
the size and number of pipelined blocks. The underlying binary representation was
exposed only when we derived the production rules in Chapter 4. The MiniMIPS
register core and bypass were designed with the exact same transformations and
the traditional full-width binary representation [31]. We now transform the register
core and bypass processes from the full-width binary into the width-adaptive binary
representation.

5.1 Related Work

Numerical compression on the datapath is an old concept, however, the use of width
adaptivity in asynchronous architectures was first presented by Manohar [25].
Analogous studies in the synchronous domain include clock-gating as a means
of suppressing switching activity on the datapath [2, 3], and byte-serial, byte-
semi-parallel, byte-parallel implementations, which leverage synchronous vertical
pipelining [4]. In width-adaptive MIPS studies, datapath switching activities were
reduced by 2/3 [25], and among other similar studies in the synchronous 32-bit
architectures, switching activity and energy savings range from 30 to 80%. With
wider datapath architectures, such as the 64-bit Alpha 21264, one can expect
even greater reduction in datapath activity. The primary disadvantage of the
synchronous implementations is that control is significantly complicated with the
addition of bypassing and forwarding paths. We show that width adaptivity in

65

66

(c) banked, width−adaptive(a) non−width−adaptive

(b) width−adaptive

Figure 5.1: Switching activity in a) a non-width adaptive register file, b) a width-
adaptive register file, and c) a banked width-adaptive register file.

our asynchronous pipeline is entirely transparent and thus requires no change to
the non-width-adaptive register control.

Vertical pipelining, as described in Chapter 3, is conducive to width adaptiv-
ity implementations in asynchronous designs, because the pipeline stages delineate
natural boundaries at which numbers may be terminated by compression.1 Each
block of data is extended by an additional delimiter bit to encode where the number
terminates. A smaller block size gives finer granularity for terminating compress-
ible numbers along with a shorter cycle time, but incurs a greater energy overhead
cost in storing delimiter bits, propagating control, and an increased total block
latency across a full-width number. A tradeoff study between WAD granularity
and energy is presented by Manohar [25]. Although each vertical pipeline stage
is an opportunity to encode a block width-adaptively, one may select any subset
of pipeline stages to transform into WAD. For this thesis, we restrict our design
space to the same four-bit block granularity inherited from vertical pipelining, and
uniformly transform all pipeline stages using WAD.

Compressible numbers may also be arbitrarily expanded by storing and com-
municating higher significant blocks with the understood bits, which gives them
redundant representations. In the course of manipulating integers through func-
tional units, compressible integers may become expanded, which accounts for sub-
optimal energy savings. Manohar proposed and compared several re-compression
schemes to narrow the gap from optimal energy savings [25].

1 Unpipelined width-adaptive functional units (called WAD-aligned) are described in
the WAD paper [25], however, we omit them from our register file study.

67

5.2 WAD Encoding

A WAD number’s width is encoded in its physical representation. Higher bits
beyond the delimiter may be interpreted either normally or as leading 0’s or 1’s,
depending on the value of the delimiter. WAD datapaths and functional units
save considerable energy by suppressing switching activity of higher significant
bits when they are understood without communication. Table 5.1 summarizes the
encoding of the delimiter bit with the MSB for a WAD block. Figure 5.2 illustrates
a few examples of width-adaptive representations of integers.

Table 5.1: The encoding of width-adaptive datapath (WAD) blocks

delim. bit MSB next block control

0 0 normal propagate
0 1 normal propagate
1 0 0 terminate
1 1 1 terminate

= 0

001XXXXX 0 0 0 1 0 0 0 0 1 0 0 0 = 262

1 0 0X X X X X 1 01 1 1 1 1 1 0 1 1 1 =−263

XXXXX 1X X X X X X X X X X 1 1 11 = −1

1 0000XXXXXXXXXXXXXX X

Figure 5.2: Examples of width-adaptive representation of integers. The delimiter bits
are darkly shaded, and the MSBs are lightly shaded. X’s represent ‘don’t cares.’ Only
darkly bordered bits are communicated.

5.3 CHP Transformations

Changing from the standard binary representation to a WAD representation does
not affect the CONTROL processes; only the BYPASS and CORE need to be
adapted. We begin with the vertically pipelined processes for the bypass and core
from Chapter 3, and modify the control propagation actions to become conditional.
We introduce two evaluation conditions in the guards of the new CHP programs:
p(. . .) represents the propagation condition, where the delimiter bit of a data block
is 0, and t(. . .) is the termination condition, where the delimiter bit is 1. Recall
that the CHP template for a non-WAD pipeline stage with no shared variables
was listed as Program 3.3. With only local variables, FIFO operation suffices to

68

preserve the semantics of the unpipelined program, thus the receive actions on the
control channels may precede the corresponding send actions. We can write the
template for the WAD transformation as Program 5.1, in which control propagation
is conditional. For pipelines with shared variables, we use locks to preserve the
original semantic orderings. Applying width adaptivity, the template Program 3.4
transforms into Program 5.2. The lock action and unlocked condition maintain the
same meanings as in the non-WAD pipelines.

Program 5.1 CHP: template for a width-adaptive vertical pipeline, with independent
actions

*[(Ci[1]?c[1], . . . ,Ci[j]?c[j]);
〈independent partial width actions 1 . . . j 〉;
[p(. . .) −→ (Co[1]!c[1], . . . ,Co[j]!c[j])
[]t(. . .) −→ skip
]

]

Program 5.2 CHP: template for a width-adaptive vertically pipeline, with locking

*[((unlocked(1) ∧ c[1] := Ci[1]), . . . , (unlocked(j) ∧ c[j] := Ci[j]));
〈partial width actions 1 . . . j 〉;
[p(. . .) −→ ((lock(1); Co[1]!c[1]), . . . , (lock(j); Co[j]!c[j]))
[]t(. . .) −→ skip
];
(Ci[1]?, . . . ,Ci[j]?);
unlock(1 . . . j)
]

5.3.1 Bypass

The transformation from a non-WAD to WAD pipelined bypass is relatively simple
at the CHP level. Since the BYPASS uses no shared variables, we simply apply
template Program 5.1 to the non-WAD bypass read and writeback processes, Pro-
grams B.3 and B.4, which results in Programs B.5 and B.6.

The handshaking expansions for the WAD bypass processes are straightfor-
ward from applying any QDI handshake template, thus we omit them (and their
production rules) from this thesis.

5.3.2 Core

Since the core uses locking to protect the shared variables, we use template Pro-
gram 5.2 to transform the core read and write processes into their width-adaptive
versions, which are listed respectively in Programs D.9 and D.10. Note that for the

69

WAD read and write ports, locking is only required in the propagation condition
case, because the control cannot possibly violate exclusion in the termination case.
Figure 5.3 illustrates the delimiter bit modification needed to implement width-
adaptive read and write. For the read port, propagation depends on the value
of the delimiter bit in the selected register, and for the write port, propagation
depends on the delimiter bit of the incoming number.

conditional control

delimiter
bit

delimiter
bit

 register array

conditional control

register array

(a) (b)

R

RCi WCi

WCoRCo

W

Figure 5.3: Block diagram of a width-adaptive register core a) read port and b) write
port

Now we are ready to re-apply template handshaking expansions and floor de-
composition to the modified read and write port processes, in the same manner as
in Sections 4.1 and 4.2.

5.4 Template Handshaking Expansions

—(
The primary difference between HSEs for the non-WAD and WAD core ports is

that the control output actions are conditional, therefore acknowledgment is only
conditionally dependent on the control output. Conditional outputs are a simple
extension to the general buffer reshuffling templates, which is described in Lines’
thesis [23]. The BYPASS handshaking expansions follow directly from simple
application of handshaking templates with conditional outputs. In this section,
we discuss some subtleties of the HSEs for the CORE port processes. The HSEs
we show in this chapter are the final results of transformations similar to those
detailed in Section 4.1. The initial and intermediate versions of these HSEs are
derived in greater detail in the technical report [11].

70

Program 5.3 HSE: PCEVFB WAD pipeline stage template with locking. Co is an
conditional output channel with locking, Uo is an unconditional output channel.

*[(([U e
o]; enU↑; [Ci]; Uo↑),

([C e
o]; enC↑;

[Ci ∧ p(. . .) ∧ unlocked() −→ lock ; Co↑[]t(. . .) −→ skip]));
C e

i ↓;
(([¬U e

o]; enU↓; Uo↓),
([(p(. . .) ∧ ¬C e

o) ∨ t(. . .)]; enC↓; unlock ; Co↓),
([¬Ci ∧ ¬renU ∧ ¬enC]; C e

i ↑))
]

Program 5.4 HSE: PCEVHB WAD pipeline stage template with locking. Co is an
conditional output channel with locking, Uo is an unconditional output channel.

*[(([U e
o]; enU↑; [Ci]; Uo↑),

([C e
o]; enC↑;

[Ci ∧ p(. . .) ∧ unlocked() −→ lock ; Co↑[]t(. . .) −→ skip]));
C e

i ↓;
(([¬U e

o]; enU↓; Uo↓),
([(p(. . .) ∧ ¬C e

o) ∨ t(. . .)]; enC↓; unlock ; Co↓;
[¬Ci ∧ ¬renU ∧ ¬enC]; C e

i ↑))
]

Program 5.3 shows the full-buffer template for a process with one unconditional
input channel, one unconditional output channel, and one conditional output chan-
nel with locking. Program 5.4 shows the half-buffer counterpart. We have applied
decoupling transformations so that each output channel has its own en internal
enable [11]. These templates may be trivially generalized for an arbitrary number
of the used channels. Since these HSE templates are correct in the general case,
there is no need to prove the correctness of every specific instance thereof.

5.4.1 Core Read Port HSE

After introducing the WAD transformation to the read port, the control output
is conditional on the value of the delimiter bit of the selected register, p(reg).
Program E.1 is the HSE result after applying the template HSE Program 5.3. We
only need to lock in the case when control is propagated, and the reset phase,
starting with renC↓, only waits for the output acknowledge ¬Re

o when control
is propagated. For output full-buffered data output with half-buffered control
propagation, the result is HSE Program E.2.

71

5.4.2 Core Write Port HSE

The non-WAD write port receives an input control and input data and uncondi-
tionally produces a control output. After the WAD transformation, the control
output is conditional on the delimiter bit of the input data, p(W). We present
two variation of the WAD write port, using different transformation templates.

Unconditional internal enable. One way to make the output conditional is
to apply template HSE Programs 5.3 and 5.3, which results in adding the propa-
gation condition guard p(Wi) before WCo↑, as shown in Program E.3 (PCEVFB),
and Program E.4 (PCEVHB). We refer to this version as the unconditional write-
enable or uwen variation. Since the write-action does not generate a data output
token, only control propagation requires its own internal enable wen. In the con-
trol terminating case, the skip action does not actually have to wait for WCi

because it does not matter which register word was selected in the current pipeline
stage. Thus, WCi appears in the guard expressions for WCo↑ and 〈write〉, but
not for skip. p(Wi) is actually redundant in the guard before wen↓ because it
would already be implied by waiting for the output acknowledge ¬WC e

o , i.e., no
acknowledge would arrive if no control token was ever sent.

Conditional internal enable. An alternate HSE template for pipeline stages
with conditional output is shown in Program 5.5 (for full-buffer). The difference
from template Program 5.3 is that the internal enable for the conditional out-
put, enC , is raised conditionally, whereas in the former variation, enC is raised
unconditionally. Another difference is that the propagation and termination con-
ditions are only checked in the set phase and never checked during the reset phase,
which will lead to simpler circuits. In the control termination case, the sequence
C e

o ↓ ≺ enC↓ ≺ unlock ≺ Co↓ is entirely vacuous because enC↑ never fires, so
Co↑ never fires, therefore C e

o ↓ never acknowledges. Both templates transform un-
conditional output channels to conditional, however they translate into different
circuits, which we will compare at the end of this chapter. Applying this alternate
template to the WAD write port results in Program E.5 (PCEVFB) and Pro-
gram E.6 (PCEVHB). We refer to this version as the conditional write-enable or
cwen variation.

5.4.3 HSE Summary

We have shown that the HSEs of the WAD versions of the core process closely
resemble their non-WAD counterparts, thus we should expect that their floor de-
compositions are also similar, and therefore their production rules for circuits have
much in common. Rather than present exhaustive, repetitive floor decomposi-
tions for the width-adaptive core read and write port HSEs, we cut straight to
production rule synthesis in this chapter. The components of the resulting floor
decompositions appear in Appendix F. Detailed and comprehensive floor decom-
positions (of the same fashion as those presented from Section 4.2) are provided in
the technical report [11].

72

Program 5.5 HSE: PCEVFB WAD pipeline stage template with locking and con-
ditional internal enable. Co is an conditional output channel with locking, Uo is an
unconditional output channel.

*[(([U e
o]; enU↑; [Ci]; Uo↑),

[C e
o ∧ p(. . .) −→ enC↑; [Ci ∧ unlocked()]; lock ; Co↑
[]t(. . .) −→ skip]);

C e
i ↓;

(([¬U e
o]; enU↓; Uo↓),

([¬C e
o]; enC↓; unlock ; Co↓),

([¬Ci ∧ ¬renU ∧ ¬enC]; C e
i ↑))

]

We provide the following figures as roadmaps from complete HSEs to floor
decomposed components and production rules. Figures 5.4 and 5.5 show the de-
compositions of the WAD read port for the PCEVFB and PCEVHB reshufflings.
Figures 5.6 and 5.7 show the decompositions of the WAD write port with un-
conditional write-enable for the PCEVFB and PCEVHB reshufflings. Figures 5.8
and 5.9 show the decompositions of the WAD write port with conditional write-
enable for the PCEVFB and PCEVHB reshufflings.

HSE E.1 decomposition

Fig. 4.11
PRS H.1
HSE 4.12

HSE F.1
PRS H.10
Fig. 5.10

Fig. 4.14

HSE 4.13
PRS H.18

HSE F.2
PRS H.22
Fig. 5.12

Figure 5.4: Floor decomposition of a
PCEVFB WAD read port

HSE E.2 decomposition

Fig. 4.11
PRS H.1
HSE 4.12

HSE F.1
PRS H.10
Fig. 5.10

Fig. 4.14

HSE 4.13
PRS H.18

HSE F.3
PRS H.23
Fig. 5.13

Figure 5.5: Floor decomposition of a
PCEVHB WAD read port

—)

5.5 Width-Adaptive Production Rules

The partial handshaking expansions of the WAD read and write ports are very
similar because the only change we introduced was conditional control propagation.
The data components of the floor decomposition are the same except that we have

73

HSE E.3 decomposition

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.4
PRS H.11
Fig. 5.11

Fig. 4.14

HSE 4.23
PRS H.18

HSE F.5
PRS H.29
Fig. 5.14

Figure 5.6: Floor decomposition of a
PCEVFB WAD write port (uncondi-
tional write-enable)

HSE E.4 decomposition

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.4
PRS H.11
Fig. 5.11

Fig. 4.14

HSE 4.23
PRS H.18

HSE F.6
PRS H.30
Fig. 5.15

Figure 5.7: Floor decomposition of a
PCEVHB WAD write port (uncondi-
tional write-enable)

HSE E.5 decomposition

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.7
PRS H.8
Fig. 4.13

Fig. 4.14

HSE 4.23
PRS H.18

HSE F.8
PRS H.31
Fig. 5.16

Figure 5.8: Floor decomposition of a
PCEVFB WAD write port (conditional
write-enable)

HSE E.6 decomposition

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.7
PRS H.8
Fig. 4.13

Fig. 4.14

HSE 4.23
PRS H.18

HSE F.9
PRS H.32
Fig. 5.17

Figure 5.9: Floor decomposition of a
PCEVHB WAD write port (conditional
write-enable)

added one more row of storage per pipeline stage for the delimiter bits. Since the
data components of the HSEs have not been changed by width adaptivity (except
for the number of bit lines), their production rules remain unchanged from the
non-WAD base design. Only the control propagation elements and the handshake
controls have been adapted with slight modifications to support width adaptivity.

5.5.1 WAD Control Propagation

The introduction of conditional control propagation leads to the addition of at most
only a single n-transistor (per port per word line) to the original precharge stage

74

for unconditional control propagation. The other additional circuitry detects and
signals the skip condition for control termination in the read control propagation
array.

WAD Read Control. (Program H.10, Figure 5.10) The WAD read control
propagation production rules have an additional series NFET, which implements
the dx 0 guard of RCo↑, which is translated from [p(reg) 7→ . . .RCo↑]. The trans-
lation of the locking condition has not changed from the base design. The new
production rules for RC f

o implement the skip action in the termination case, and
requires no locking. RC f

o is shared across the entire control propagation array.

Fig. 4.4

renC [0]

RCi[1]

renC [1]renC [0]

RCi[0]

RCo[0] RCo[1]

RCo[1]

dx0

WCo[0]

WCo[1]

renC [1]

RCo[0]

dx1

RCfo [1]RCfo [0]

RCi[1]RCi[0]

renC [0] renC [1]

Figure 5.10: Width-adaptive pipeline-locked read control propagation, two ports shown.
Shaded circuits are modifications introduced by WAD.

WAD Write Control, Unconditional Write-Enable. (Program H.11, Fig-
ure 5.11) The WAD write control propagation for the unconditional write-enable
adds one series NFET to implement the dW 0 guard of WCo↑, which is trans-
lated from [p(W) 7→ . . .WCo↑]. The additional NFET adds little to no area in
comparison to the non-WAD write control propagator.

WAD Write Control, Conditional Write-Enable. (Program H.8, Fig-
ure 4.13) With the conditional write-enable reshuffling, for every iteration where
wen↑, we are guaranteed that the input WCi will arrive (eventually) and cause
WCo↑ to fire, thus the control propagation behaves like an unconditional control
propagation with respect to wen. Since the partial HSE of the non-WAD and
WAD-cwen write ports are equivalent, we can use the exact same circuit as shown
in Figure 4.13.

Register Zero. Recall that the most compact width-adaptive binary repre-
sentation of the value 0, using blocks of 4 bits, is just 10000, where the 1 represents
the terminating delimiter bit.2 Only one block’s worth of bits needs to be commu-

2 The delimiter bit of a WAD zero register will be hard-wired to 1 instead of 0.

75

Fig. 4.4

WCo[0]

wen[0]

WCi[0]

dW 0[0]

WCo[1]

wen[0]

RCo[1]

RCo[0]

WCo[1]WCo[0]

WCo[1]

wen[1]

WCi[1]

dW 0[1]

wen[1]

WCo[0]

Figure 5.11: Width-adaptive pipeline-locked write control propagation, for uncondi-
tional write-enable, two ports shown. Shaded circuits are modifications introduced by
WAD.

nicated from the core for a read from register zero.3 The higher significant blocks
require no circuits for driving the output for register zero, and can therefore may
omit the production rules for R↓ from Program H.2. Since read control propa-
gation is omitted beyond the least significant block, read control completion trees
will require one less input. This makes read-accesses to a WAD register zero, which
are somewhat frequent, extremely energy-efficient on the datapath. However, we
still need production rules for a non-modifying write to register zero, because an
input data token may take an arbitrary number of WAD blocks to represent. The
write control propagation may be non-locking since there can be no data hazards
through register zero. In Chapter 6, we will discuss alternative implementations
of the zero register outside of the core.

5.5.2 WAD Read Handshake Control

The PRSs for the WAD read handshake control are listed in the following PRS
Programs: PCEVFB H.22 (Figure 5.12), PCEVHB H.23 (Figure 5.13). The no-
table difference between the unconditional and WAD versions are the production
rules for the terminating condition, RC f

o and RC f
o . The input is acknowledged

with RC e
i ↓ after the output control is valid RC v

o or control is terminated RC f
o . The

3 A possible alternative implementation of the zero value may place a delimiter bit
below the least significant bit to indicate whether the value is zero or non-zero. The
tradeoff would be that zero values have been made more efficient at the expense of
adding one more bit of switching to all non-zero values.

76

read-enable renC is reset after the output control is acknowledged ¬RC e
o , but only

when control is propagated, otherwise it is bypassed by ¬ RC f
o in the termination

case.
Note that for full-buffering, we use a variation where ¬RC f

o is checked before
requesting the next token with RC e

i ↑. This may seem like half-buffering in the
terminating case, however, RC f

o is not a true output, and one may argue by tran-
sition count that RC f

o ↓ is unlikely to be on the critical path of the reset phase. The
other option is to complete RC v

o and RC f
o together with a NOR gate and check

the result before ren↓, but this incurs more overhead circuits to keep the system
QDI.

Fig. 4.4

renv

RCvi

RCvo

Rv

RCvi

renv

RCfo

RCeo

RCfo

renC

RCei

renC

RCfo

Figure 5.12: Single port of a width-adaptive read handshake control, PCEVFB reshuf-
fling (resets not shown). Shaded circuits are modifications introduced by WAD.

Fig. 4.4

RCfo

RCeo

RCfo

renv

RCvi

Rv

RCvo

RCvo

RCvi

renv

RCfo

renC

RCei

renC

Figure 5.13: Single port of a width-adaptive read handshake control, PCEVHB reshuf-
fling (resets not shown). Shaded circuits are modifications introduced by WAD.

77

5.5.3 WAD Write Handshake Control

Unconditional Write-Enable

The PRSs for the WAD write handshake control with unconditional write-enable
are listed in the following Programs: PCEVFB H.29 (Figure 5.14), PCEVHB H.30
(Figure 5.15). The control termination condition is detected by WC f

o and its
complement. The input acknowledge WC e

i ↓ is sent after the output is valid WC v
o

or control is terminated WC f
o . The write-enable wen is reset after the control

output is acknowledged WC e
o ↓, but only if control is propagated, otherwise the

acknowledge check is bypassed by ¬ WC f
o . For the full-buffer, we use the variation

where ¬WC f
o is checked before requesting the next input token with WC e

i ↑. A
rough transition count of the cycle reveals that WC f

o is very unlikely to be on the
critical path of the reset phase.

Fig. 4.4

WCfoWCfo

WCeo

dW 1

wen

wen
WCei

WCfo

wen

wvc

WCvi

WCvo

wvc

WCvi

wen

Figure 5.14: Single port of a width-adaptive write handshake control, with unconditional
write-enable, PCEVFB reshuffling (resets not shown). Shaded circuits are modifications
introduced by WAD.

Conditional Write-Enable

The PRSs for the WAD write handshake control with conditional write-enable are
listed in the following Programs: PCEVFB H.31 (Figure 5.16), PCEVHB H.32
(Figure 5.17). For the conditional write-enable reshuffling, wen↑ is guarded by
the propagation condition, dW 0, so there is no need to locally compute WC f

o for
the termination condition. The termination condition, dW 1, bypasses the wait
for the control output validity WC v

o before the input is acknowledged WC e
i ↓.

The circuits for both the full-buffer and half-buffer are noticeably simpler than
the unconditional write-enable counterparts. In the control terminating block,
wen remains low, therefore WC v

o remains low, and RC e
o remains high, so the

entire right-half of the circuits in Figure 5.16 and 5.17 remains idle, which saves

78

Fig. 4.4

dW 1

WCfo

wen

WCeo

WCfo

wen
WCei

WCfo

wvc

WCvi

WCvo

WCvo

wvc

WCvi

Figure 5.15: Single port of a width-adaptive write handshake control, with unconditional
write-enable, PCEVHB reshuffling (resets not shown). Shaded circuits are modifications
introduced by WAD.

some energy (in the terminating case) compared to the unconditional write-enable
variations.

Fig. 4.4

WCeo

dW 0

WCei

dW 1

wen

wenWCvi

wvc

wen

WCvo

wvc

WCvi

wen

Figure 5.16: Single port of a width-adaptive write handshake control, with conditional
write-enable, PCEVFB reshuffling (resets not shown). Shaded circuits are modifications
introduced by WAD.

5.5.4 PRS Comparison of WAD Write Ports

With production rules for both variations of the WAD write control we can specula-
tively compare their performance and energies. In the case of control propagation,
we note that wen↑ occurs later for the conditional write-enable than with the
unconditional write-enable because it must wait for the data dW to arrive. As-
suming that subsequent actions in the WAD write port cycles are similar (same

79

Fig. 4.4

WCei

WCeo

dW 0dW 1

wen

wen

WCvi

wvc

WCvo

WCvo

wvc

WCvi

Figure 5.17: Single port of a width-adaptive write handshake control, with conditional
write-enable, PCEVHB reshuffling (resets not shown). Shaded circuits are modifications
introduced by WAD.

transition count), one can expect the conditional write-enable version to have a
slightly longer handshake cycle time, and slower vertical latency per block (roughly,
four transitions instead of two).

However, a slower write port operation may not noticeably slow down the
entire datapath. A slower register write would slow down the datapath every time
a dependent register read stalled on the same register, because the performance of
reading would be limited by the write’s cycle time and vertical latency of unlocking.
We expect this to be a rare case because the bypass already forwards dependent
operands past the core and through to the operand bus, so the core writeback
remains off the critical path. The width-adaptive bypass can be implemented with
a two-transition vertical latency per block by using the unconditional bypass-enable
variation of reshuffling, analogous to the unconditional write-enable. Thus, we can
tolerate a slightly slower writeback operation in the core.

We expect the conditional write-enable version to consume less energy than the
unconditional write-enable version, because dW 0 is not wired to input gates across
an entire array for every block, and wen (which fans out across the control array)
is not switched in the terminating block of a WAD write. We will show below that
the handshake control circuit for the conditional write-enable is slightly simpler
and therefore smaller.

5.6 Results

In this section we present results for the WAD implementations of the register core.
We compare the WAD results with the non-WAD base design for both banked (16
registers) and unbanked (32 registers) register cores, and we show the impact of
width adaptivity on performance and energy.

80

5.6.1 Area

Recall that the block floorplan for the WAD designs is very similar to that of
the non-WAD base design. The most significant difference is that each block has
an additional row of register cells for the delimiter bit. The layout dimensions
correspond to the labels in Figure 4.4 and entries in Table 4.1. The height of
the WAD control propagation cell (for both unconditional and conditional write-
enable) is ycpWAD

, which is only 5% larger than the non-WAD counterpart.

5.6.2 Reading

For the read port simulations, we simulate only control propagation cases for all
blocks because the termination cases skip the output handshake and operate with
fewer cycle transitions, and hence will never limit the overall cycle time. Thus, we
allow all non-delimiter register bits to reset randomly with metastability, but force
the delimiter bits to reset to 0 to guarantee propagation. Since the register cell
and interface array circuits have not changed, the read latencies remain the same
as before, as listed in Tables 4.2 and 4.3.

Table 5.2: Read-access performance and energy comparisons for the WAD register file,
for a block size of 4 bits x 32 registers

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

half 22 2.149 465.4 34.10 157.5
full 20 2.014 496.4 33.18 134.6

Table 5.3: Read-access performance and energy comparisons for the WAD register file,
for a block size of 4 bits x 16 registers

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

half 22 2.025 493.8 19.88 81.6
full 20 1.872 534.3 19.61 68.7

Tables 5.2 and 5.3 show simulation results for both reshufflings of the WAD
read port with, respectively, 32 and 16 registers per bank. The same results also
appear in Table J.3. The relative improvements from banking read ports for other
points in the design space are shown in Table J.7.

Comparing WAD: unbanked, 32 registers. For the half-buffer reshuffling,
the WAD version is 9.1% slower than the non-WAD version and consumes 26.8%

81

more energy per block. For the full-buffer reshuffling, the WAD version is 7.6%
slower than the non-WAD version and consumes 24.8% more energy per block.

Comparing WAD: banked, 16 registers. For the half-buffer reshuffling,
the WAD version is 10.1% slower than the non-WAD version and consumes 24.9%
more energy per block. For the full-buffer reshuffling, the WAD version is 9.3%
slower than the non-WAD version and consumes 24.3% more energy per block.

The increase in energy per block fits our expectations because width adaptivity
adds one more bit line per block, which was originally four bits. Since the aver-
age case width of 32-bit integers is far less than 80% of the full-width [25], width
adaptivity would result in overall energy savings, because fewer blocks are acti-
vated. Even after we account for the combined effect of performance and energy
with energy efficiency (Eτ 2), which is worse by 46.0% to 51.0% per block, a WAD
read port is still expected to be more energy-efficient than a non-WAD read port.

Complete comparisons between all WAD designs of the read port and their non-
WAD counterparts are given in Tables J.5 (half-buffered) and J.6 (full-buffered).
Typical throughput degradation from adding width adaptivity ranges from 7 to
10%, however, we expect that performance gap may be reduced with more aggres-
sive transistor sizing (at the cost of more energy), since we reused as much layout
as possible from the non-WAD read port. Table J.4 contains comparisons between
half and full buffering for the WAD read port. Full buffers are typically 5 to 9%
faster than the half buffer versions.

Comparing banking: WAD half-buffer reshuffling. For the half-buffer
reshuffling, reducing the bank size to 16 results in a 6.1% speedup in through-
put, 41.7% reduction in energy per cycle per block, which amounts to a 93.1%
improvement in energy efficiency.

Comparing banking: WAD full-buffer reshuffling. For the full-buffer
reshuffling, reducing the bank size from 32 to 16 results in a 7.6% speedup in
throughput, 40.9% reduction in energy per cycle per block, which amounts to a
95.9% improvement in energy efficiency.

5.6.3 Writing, Unconditional Write-Enable

For all write port simulations, we simulate only control propagation cases for the
same reason as with the read port, thus we write only 0s in the delimiter bit
position for all blocks, while all other bits toggle between alternating data tokens
to simulate worst-case writing energy. Since the register cell and interface array
circuits have not changed, the write latencies remain the same as before, as listed
in Tables 4.4 and 4.5. The same results also appear in Table J.13. The relative
improvements from banking write ports for other points in the design space are
shown in Table J.18.

Comparing WAD: unbanked, 32 registers. Table 5.4 shows simulation
results for both reshufflings of the WAD write port with unconditional write-enable.

82

Table 5.4: Write-access performance and energy comparisons for the WAD register file,
with the unconditional write-enable variation, for a block size of 4 bits x 32 registers

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

half 22 2.601 384.5 35.07 237.3
full 20 2.604 384.0 34.90 236.7

For the half-buffer reshuffling with unconditional write-enable, the WAD version is
4.3% slower than the non-WAD version, consumes 26.1% more energy per block,
and is less energy-efficient by 37.9% per block. For the full-buffer reshuffling with
unconditional write-enable, the WAD version is 6.2% slower than the non-WAD
version, consumes 27.1% more energy per block, and is less energy-efficient by
44.4% per block.

Table 5.5: Write-access performance and energy comparisons for the WAD register file,
with the unconditional write-enable variation, for a block size of 4 bits x 16 registers

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

half 22 2.288 437.0 13.17 69.0
full 20 2.281 438.5 13.46 70.0

Comparing WAD: banked, 16 registers. Table 5.5 shows simulation re-
sults for both reshufflings of the WAD write port with unconditional write-enable.
For the half-buffer reshuffling with unconditional write-enable, the WAD version is
4.8% slower than the non-WAD version, consumes 17.2% more energy per block,
and is less energy-efficient by 29.3% per block. For the full-buffer reshuffling with
unconditional write-enable, the WAD version is 7.1% slower than the non-WAD
version, consumes 19.1% more energy per block, and is less energy-efficient by
38.1% per block.

Comparing banking: WAD half-buffer reshuffling. For the half-buffer
unconditional write-enable reshuffling, reducing the bank size to 16 results in a
13.7% speedup, 62.5% reduction in energy per cycle per block, which amounts to
a 244.1% improvement in energy efficiency.

Comparing banking: WAD full-buffer reshuffling. For the full-buffer
unconditional write-enable reshuffling, reducing the bank size from 32 to 16 results
in a 14.2% speedup, 61.4% reduction in energy per cycle per block, which amounts
to a 238.3% improvement in energy efficiency.

83

5.6.4 Writing, Conditional Write-Enable

Table 5.6: Write-access performance and energy comparisons for the WAD register file,
with the conditional write-enable variation, for a block size of 4 bits x 32 registers

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

half 24 2.556 391.3 34.40 224.7
full 22 2.636 379.4 36.04 250.4

Table 5.7: Write-access performance and energy comparisons for the WAD register file,
with the conditional write-enable variation, for a block size of 4 bits x 16 registers

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

half 24 2.243 445.9 13.03 65.5
full 22 2.320 431.1 13.51 72.7

Tables 5.6 and 5.7 show simulation results for both reshufflings of the WAD
write port with conditional write-enable.

Comparing WAD: unbanked, 32 registers. For the half-buffer reshuffling
with conditional write-enable, the WAD version is 2.7% slower than the non-WAD
version, consumes 23.7% more energy per block, and is less energy-efficient by
30.5% per block. For the full-buffer reshuffling with conditional write-enable, the
WAD version is 7.3% slower than the non-WAD version, consumes 31.3% more
energy per block, and is less energy-efficient by 52.8% per block.

Comparing WAD: banked, 16 registers. For the half-buffer reshuffling
with conditional write-enable, the WAD version is 2.8% slower than the non-WAD
version, consumes 16.0% more energy per block, and is less energy-efficient by
22.9% per block. For the full-buffer reshuffling with conditional write-enable, the
WAD version is 8.7% slower than the non-WAD version, consumes 19.6% more
energy per block, and is less energy-efficient by 43.4% per block.

Table 5.7 show simulation results for both reshufflings of the WAD write port
with conditional write-enable. The same results also appear in Table J.14. The
relative improvements from banking write ports for other points in the design space
are shown in Table J.18.

Comparing banking: WAD half-buffer reshuffling. For the half-buffer
conditional write-enable reshuffling, reducing the bank size to 16 results in a 14.0%
speedup, 62.1% reduction in energy per cycle per block, which amounts to a 242.8%
improvement in energy efficiency.

84

Comparing banking: WAD full-buffer reshuffling. For the full-buffer
conditional write-enable reshuffling, reducing the bank size from 32 to 16 results
in a 13.6% speedup, 62.5% reduction in energy per cycle per block, which amounts
to a 244.4% improvement in energy efficiency.

With the expected number of active width-adaptive blocks, a width-adaptive
write port (both conditional and unconditional write-enable) will consume signifi-
cantly less energy than a non-width-adaptive write port, and still be slightly more
energy-energy efficient.

Complete comparisons between all WAD designs of the write port (including
unconditional and conditional write-enable) and their non-WAD counterparts are
given in Tables J.16 (half-buffered) and J.17 (full-buffered). As expected, imple-
menting width adaptivity incurs up to around 25% overhead in energy per block
because of the additional delimiter bit. However, taking into account the typ-
ical compression of a 32-bit integer, width adaptivity (even with four-bit block
granularity) achieves an overall reduction in energy consumption. The conditional
write-enable variations typically consume 1 to 3% less energy than the uncondi-
tional write-enable variations (for both reshufflings) because dW 0 does not fan out
across the entire control propagation array and the handshake control circuit is
simpler. Another less significant reduction in energy (which was not simulated)
results from the fact that wen is not raised in the width-adaptive terminal block
of the write port, which would probably save another 1 to 2% in only the terminal
block.

Table J.15 compares half and full buffering for the WAD write ports. Interest-
ingly, there is little difference in performance between the full and half buffered
WAD write ports with unconditional write-enable, but for the conditional write-
enable variations, the half buffer actually outperforms the full buffer by around
3%, and consumes 1 to 5% less energy. The differences are too small to conclude
whether one reshuffling is superior to the other because of freedom in transistor
sizing.

5.7 Summary

In this chapter, we have shown the transformation from a standard vertically
pipelined register core into a width-adaptive core, which adds one more bit-slice
to the base design block and makes control propagation for the read and write
port blocks conditional. New circuits for the WAD core were derived for the con-
trol propagation array and handshake control, while all others remained the same,
even for the banked design. More importantly, width adaptivity is entirely trans-
parent to the CONTROL for the register core, and thus requires no modification
(and hence, no complication) in the CONTROL. Our simulation results show that
simply implementing the width-adaptive read and write ports results in a little
performance loss from the increase in complexity, and an increase in block energy

85

overhead proportional to the relative increase in the number of bits. The sav-
ings from typical integer compression overcomes the overhead, which makes width
adaptivity a good solution for reducing energy on the datapath.

Chapter 6

Register Zero

The MIPS architecture specifies that register zero is hard-wired to the value 0.
This chapter focuses on possible alternatives to implementing a hard-wired zero
register. In Chapter 4, we described how to implement the zero register in the core,
and gave a set of production rules for the register cell. In Chapter 5, we described
how the control for reading from register zero was simplified by width adaptivity.
This chapter is organized into two parts: the first part describes the high-level
CHP transformation that moves the functionality for reading register zero into the
CONTROL and BYPASS , and the second part describes the CONTROL modifi-
cation that moves the functionality for non-modifying writes into the bypass.

6.1 Related Work

The zero register is frequently sourced as an operand and used as a destination
when a result from an execution unit is discarded. A survey of some SPECInt95
benchmarks run on RISC machines showed that as many as 40% of register writes
and 25% of register reads reference register zero [50]. It is also useful for syn-
thesizing new instructions from existing instructions by using one operand as 0.
These are a few of the reasons register zero was introduced in many early RISC
architectures [19].

In the MiniMIPS, reads from register zero came from the core and passed
through the read bypass before reaching the bus [31], and non-modifying writes to
register zero passed through the writeback bypass and were consumed in the core.
Our non-WAD implementation of the core zero register, including the non-locking
control propagation, uses the same production rules as those in the MiniMIPS,
except that we have connected the blocks in a vertical pipeline instead of using
pipelined completion .

Tseng showed that moving the zero register to the bypass instead of the core
saved 18% to 26% energy depending on the access frequency [50]. The majority
of the energy reduction came from reducing bit line activity, but some of the
reduction may be attributed to the reduced bit line capacitance from having one
fewer register share each bit line. In their single-railed (synchronous) register file,

86

87

the switching activity of the register core depended on the value of the operand
being sourced, whereas in our dual-rail register core, each bit will always switch one
bit line. Thus, we expect our relative energy savings from reading our of the core
to be less than that found by Tseng. They also save energy on the non-modifying
writes by conditionally suppressing write bit line switching. However, given that
energy dissipated by single-railed writing to the register core depends whether or
not the write bit line is discharged, we expect greater relative energy savings for
suppressed writes to dual-rail register core.

6.2 Reading Register Zero

We express the same energy reducing techniques mentioned before as transforma-
tions of our register file CHP decomposition. While the original specification of the
register file Program 2.2 remains unchanged, the decomposition changes slightly
in the BYPASS and the CONTROL. In this section, we work with the finely
decomposed processes in Chapter 2 without having to re-decompose the register
file from the top. The CORE process is somewhat simplified after removing the
conditional check for the zero index, but as we have seen in the production rule
synthesis of the core, this only translates to not using a special zero register in the
core cell array.

6.2.1 Bypass Modifications

The new decomposition of the BYPASS and CONTROL keeps the same channel
interfaces as the original decomposition detailed in Chapter 2. Our original decom-
position of the BYPASS finished with the read bypasses given in Program B.2.
We encode an additional value “zero” on the control channels BPY and BPX .
Program B.7 shows the read bypass with an additional case for sourcing the 0
value to the operand buses X and Y .

Recall that the original read bypass fit the template of a standard conditional
input or merge process, for which production rule synthesis (for many reshufflings)
is straightforward [23]. All we have done is add one more input case to the merge
process, except that the “zero” case doesn’t actually require a data input token.
One benefit of sourcing a value from the bypass is that a bypass-sourced value
can arrive at the operand bus roughly two transitions sooner than a value sourced
from the register core. A simple synchronous datapath would reap little or no gain
from having a value available on the bus a fraction of a clock cycle earlier, but
an asynchronous datapath may begin useful work as soon as a value is available
without constraint to a discrete time-granularity.

6.2.2 Control Modifications

Now that the read bypass can support sourcing the hard-wired zero value, we need
to update the CONTROL to detect a read access to register zero, send the “zero”

88

control to the read bypass, and suppress control to the CORE . The original read
bypass control processes are listed in Program C.1. The new read bypass control
is shown in Program C.6. In the ¬zx and ¬zy sub-cases, we now compare the
source index with 0. If register zero is indexed, the control sends “zero” to the
bypass, and suppresses sending the index token to the core. When the read bypass
receives “zero”, it will not expect any input from the core, thus we have preserved
the semantic flow of tokens in and out of the system composed of the new bypass
and control.

6.2.3 Impact of Width-Adaptivity

The modified bypass can be vertically pipelined as easily as the original bypass,
by applying the template transformation. Since width adaptivity is completely
transparent to the control, The same control can be used for both non-WAD and
WAD register files. A WAD bypass would require the register zero modification
only at the least significant block, because sourcing 0 always terminates control
at the first block; the remaining pipeline stages remain the same as the non-WAD
versions.

We observed at the end of Section 5.5.1 that a read from a WAD register zero
consumes only a fraction of the core energy from reading a non-WAD register zero.
For a 32 bit register file with four-bit width-adaptive granularity, only the least
significant block is communicated, thus consuming only about 1/8th the energy
of a full-width read. Thus, the relative energy savings of suppressing register zero
reads is greater for a non-WAD register cores than to a WAD cores. However, in
both cases, the zero value appears on the operand buses sooner, so both designs
would equally benefit in performance.

6.3 Writing Register Zero

The original specification for the register file already includes a case for suppressing
writes to the register core in the writeback bypass, shown in Program B.1. The
BPWB channel communicates whether or not the value received on Z is committed
to the register core. The only modification required is the control process that
communicates on BPWB .

6.3.1 Control Modifications

The original writeback control is Program C.2 and the new writeback control is
specified in Program C.7. We have added a new case for when register zero is
accessed as a destination. The control must still read a token on the ZBUSWB

input channel and read the validity bit that accompanies it on ZV , but we send
false on BPWB to suppress copying a non-modifying write unnecessarily to the
register core. Note that the control can tell the writeback-bypass to discard the

89

result independent of the validities val and zv . We still communicate null on
the WI index channels to the core to synchronize the demuxes, and guarantee
read-write exclusion of the core port indices.

One could arguably reduce energy further for read accesses from register zero
by hard-wiring zero values directly at the inputs of the execution units, at the cost
of adding complexity to the decode and execution units. Likewise, terminating
write accesses to register zero as early as the outputs of execution units can further
reduce energy consumed by the buses. However, in this thesis, we restrict ourselves
to evaluating techniques that do not affect the original sequential specification.

6.3.2 Impact of Width-Adaptivity

Since the writeback bypass remains unchanged, width adaptivity introduces the
same transformation as shown in Section 5.3.1. Each non-modifying write to reg-
ister zero that terminates in the bypass saves core energy. The amount of core
energy saved depends on the frequency of writes to register zero, and how many
blocks are communicated for the width-adaptive versions. A non-WAD core un-
conditionally receives a full-width input spanning all blocks, whereas a WAD core
receives variable-width inputs, spanning fewer blocks. Thus, the relative energy
savings is greater for a non-WAD register file.

6.4 Summary

This chapter presented some alternative implementations (at the CHP level) of a
hard-wired zero register that reduce core energy consumption. The CORE and
BYPASS changes proposed are compatible with other transformations, such as
width adaptivity, and the optimizations presented in the remainder of the thesis.

Chapter 7

Port Priority Selection

As register files continue to grow well beyond 32 physical registers, and into hun-
dreds of physical registers with increasing number of ports to accommodate in-
creasing instruction-level parallelism (ILP), their energy consumption becomes in-
creasingly significant in the energy budget for a processor core. In this chapter, we
present another transformation that potentially reduces core energy consumption
in the register file, Port Priority Selection or PPS, introduced and patented by
Sun Microsystems [40]. The general idea behind PPS is that multiple copies of
the same register value need not be simultaneously read from the core, rather, a
single copy may be fetched from one port (the one with highest ‘priority’ among
those requesting the same index) and duplicated external to the core, as shown in
Figure 7.1. We present PPS as a high-level transformation of the BYPASS and
CONTROL in the context of our dual-ported asynchronous register file.

Y
−

by
pa

ss

Y
−

by
pa

ss

(a)

X
−

by
pa

ss

X
−

by
pa

ss

(rs == rt) (rs == rt)

(b)

R[1]
R[0]R[0]

R[1]

Figure 7.1: a) A traditional multi-ported register file may retrieve the same register
through different ports, whereas b) a PPS implementation may reduce energy by sup-
pressing redundant read accesses to the core.

90

91

7.1 Related Work

Zyuban and Kogge modeled the benefit of using PPS in multi-ported register
files in superscalararchitectures and concluded that PPS (along with other energy-
reducing analog circuit techniques) would potentially reduce energy consumed by
heavily ported register cores by large factors [57,58]. Another motivation for PPS
is that by making read ports exclusive, they open the opportunity for using the
same bit lines for (time-multiplexed) reading and writing, which greatly reduces the
number of ports. The register cell we present does not support time multiplexed
sharing of ports, but such designs may be of interest as the demand for ports
increases. A general and efficient implementation of the port priority and operand
copy logic is explained in the Sun patent [40]. However, we only need to implement
the same logic for dual-read and dual-write ported registers.

7.2 Bypass Modifications

We start by modifying the (read) BYPASS processes to support operand copying.
Suppose, without loss of generality, that the X port has higher priority than the
Y port, meaning when both ports normally request the same register, only port X
will read the operand from the core, port Y receives its copy from X . A schematic
of the decomposed PPS read bypass is illustrated in Figure 7.2. The writeback
bypasses remain unchanged from the original design and are not shown. We have
introduced a new channel XY over which a value is copied from one port to the
other operand bus. Another new channel from the CONTROL, PPS , tells the
higher priority port X whether or not to copy its read value to Y .

We rewrite the decomposed CHP for the read bypass as listed in CHP Pro-
gram B.8. We have included the changes from Chapter 6 to support the read
bypass sourcing of the hard-wired zero value. In the BPZX read bypass, we have
added a receive communication on channel PPSBPX ? which controls the conditional
copy on XY !. In the BPZY read bypass, we have extended the BPY channel to
communicate one more exclusive signal “fromX ”, which selects XY ? as the source
of input.

The BPZX read bypass is now a three-way merge with two outputs, one of
which is conditional. The behavior of BPZX fits into a class of generalized function
templates for which handshaking expansions and production rules are straightfor-
ward and requires no further analysis. The BPZY read bypass is simply extended
to a four-way merge, for which template synthesis is well-known. We omit produc-
tion rules for the new read bypasses from this thesis.

7.3 Control Modifications

In this section, we describe the changes necessary in the CONTROL to correctly
operate the bypass that supports PPS. There are several variations that may work,

92

XY

X Y

BPZX BPZY BPY

Z
Y

[1]

R[1]

Z
X

[0]

PPS ZY
[0]

BPX

ZX
[1

]

R[0]

Figure 7.2: Modified read bypass decomposition for Port Priority Selection

but we present only one. We work directly with the decomposed CONTROL
processes from Section 2.5.

The new decomposition is: CONTROL ≡ RDCOPY ‖ RSRTEQ ‖ RSCOMP ‖
RTCOMP ‖ WBCTRL ‖ ZBCOPY ‖ RSCOPY ‖ RTCOPY , and is shown in
Figure 7.3. (For comparison, the original decomposition is shown in Figure 2.7.)
The RDCOPY , WBCTRL, and ZBCOPY processes remain unchanged. We have
added RSRTEQ (Program C.8) to compare when rs = rt , which needs copies of
RS and RT from RSCOPY and RTCOPY , shown below.

CONTROL.RSCOPY ≡ *[RS?rs ; RSRS !rs ,RSEQ !rs]
CONTROL.RTCOPY ≡ *[RT ?rt ; RTRT !rt ,RTEQ !rt]

In RSRTEQ , eq compares rs against rt , which determines when there is an op-
portunity to use the PPS.

We give the CHP for RSCOMP and RTCOMP in Program C.9. One can easily
verify that when rs 6= rt (eqs and eqt are false), the CONTROL and BYPASS
processes behave exactly as they did in the original decomposition, without port
priority selection. Now we verify the behavior when rs = rt . First we look at
RSCOMP , the control for the X port. When the bypass forwarding condition is
true for both read bypasses (zx∧zy ⇒ rs = rt ⇒ eqs∧eqt), we always suppress port
copying at the read bypasses because the writeback already copies the dependent
operand to both read bypasses; bypass-forwarding always overrides PPS. When an
operand is bypassed, the RTCOMP only sends “z0” or “z1” to BPYZ . Changing
the control to suppress copying at the writeback would involve more modifications
than are necessary.

Note that in this version, if rs = rt = 0, we use the hard-wired zero at the
bypasses without copying, because both read bypasses already support sourcing
0. Copying zero from X to Y would unnecessarily complicate control further.
Finally, when rs 6= 0 ∧ rt 6= 0 ∧ rs = rt , we activate port copying on XY in the
read bypasses by communicating PPSBPX !eqs (which is true) from RSCOMP , and
BPY !”fromX ” from RTCOMP . Thus, we have proven that the new register file

93

CONTROL

WBCTRL

RDCOPY ZBCOPY

RTCOMPRSCOMP
RSRTEQ

ZBUS

B
PZ

X
[0]

R
I[0]

B
PX

B
PZ

Y
[0]

B
PZ

X
[1]

B
PZ

Y
[1]

R
I[1]

B
PY

RTCOPYRSCOPY

RD

ZV[0] ZV[1]

V
al

id

WI[1]WI[0]

BPWB[0] BPWB[1]

RS RT

 PPSBPX

Figure 7.3: Schematic of Control decomposition for port priority select

decomposition of the CONTROL and BYPASS correctly implements priority port
selection while adhering to overall behavior required by the original sequential
specification. From here, synthesis into QDI production rules from the current
decomposition is straightforward.

7.4 Summary

Having two read ports and two write ports in a register file is not considered heavily
ported in comparison to register files found in modern superscalarmicroprocessors.
The frequency of instructions that source two identical operands (out of a possible
32 registers) alone may not be sufficient to warrant the use of PPS. However,
in modern and future generations of synchronous and asynchronous processors
that increase the number of registers and buses to leverage increasing ILP, PPS
may play an important role in reducing the number of accesses to the register file
core(s) and the energy per access. We have demonstrated the ease with which PPS
is specified and implemented asynchronously for a small number of ports, but a
more general and scalable method may be required for more heavily ported register
file architectures.

Chapter 8

Non-Uniform Control Completion

One of the limitations to symmetric banking that we have pointed out is that it
introduces more channels, hence more wiring and interconnect requirements. It
becomes difficult to place and route a single bypass in relation to a large number
of banks, because the physical implementation is mapped onto a plane and a finite
number of metal layers for routing. In the remaining two chapters, we turn to
techniques that potentially speed up the register file access times and throughput
in the average case without changing the CORE ’s external interface, and hence,
requiring no more channels. Our approach in this chapter is to leverage register
usage distributions to give more frequently used registers higher throughput, while
allowing infrequent registers to operate with a lower throughput.

In a synchronous design, unless the register file contains a critical path, the
datapath is unlikely to speed up by making certain register accesses faster. How-
ever, if the slowest cycle introduced by nesting still meets the cycle time require-
ment, then one can potentially conserve energy by dynamically changing the load
or drive strength of signals [50].

An asynchronous design, on the other hand, is not constrained to any global
timing requirements, so introducing non-uniform register accesses has greater po-
tential to reduce energy and gain performance in the average case. Moreover,
robust delay-insensitive asynchronous systems can tolerate any variation in ac-
cess times, therefore maintaining correctness comes at no additional complexity or
retiming.

8.1 Register Statistics

Most architectures have designated conventions for register allocation, which are
exposed to the register allocator of a compiler. For example, the MIPS register
conventions are described in Table 8.1. One of the consequences of register conven-
tions is that certain registers are used far more frequently than others. The most
frequently used MIPS registers are bolded in Table 8.1. Typically, the 16 most fre-
quently used registers on 32-register in-order machines running integer benchmarks
account for over 90% of all register accesses [50]. We show the 20 most frequently

94

95

read and written MIPS registers (sorted by frequency) in Table 8.2.1 The top 16
registers constitute 99% of all accesses to the register file. The statistics always
depend on the architecture and the compiler that generated the code.

Table 8.1: MIPS register conventions

name reg# convention

$zero 0 constant 0
$at 1 reserved for compiler

$v0-$v1 2–3 results
$a0-$a3 4–7 arguments
$t0-$t7 8–15 (callee-saved) temps
$s0-$s7 16–23 caller-saved
$t8-$t9 24–25 (callee-saved) temps
$k0-$k1 26–27 reserved for OS

$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

More sophisticated out-of-order execution machines have register renaming
hardware which dynamically re-maps logical registers to physical registers [38].
Dynamic register renaming may further increase the fraction of accesses repre-
sented by the most frequent half of physical registers if the renamer keeps track
of a separate free-list per partition, and always allocates the first available fast
register before allocating a slow register.

To evaluate potential speedup, we ask the following questions:

• Supposing we sorted registers by their usage frequency, what fraction of all
accesses would be represented by the N most frequently used registers across
a range of choices of N?

• What combination of speedup and slowdown for the respective partitions
would result in a net speedup?

We let rh represent the fraction of all register accesses represented by the most
frequent half of registers (say, 16 out of 32), and normalize the baseline uniform
access register file’s cycle time to 1. τf (< 1) represents the normalized cycle time
of the fast partition of the nested design, assumed to contain the most frequently

1 Averaged across SPECInt95 benchmarks with training inputs: 099.go, 129.com-
press, 134.perl, 124.m88ksim, 130.li, 147.vortex, 126.gcc, 132.ijpeg, compiled with
gcc-2.95.3 -O3, run on a MIPS simulator

96

Table 8.2: Cumulative dynamic usage frequencies of the 20 most read and written MIPS
registers

N reg read% cumul. reg write% cumul.

1 0 32.95 32.95 0 27.63 27.63
2 3 14.90 47.85 2 18.96 46.59
3 2 12.59 60.44 3 18.35 64.94
4 30 9.78 70.22 4 9.57 74.51
5 5 8.03 78.25 5 6.83 81.34
6 4 6.36 84.61 6 4.87 86.21
7 29 4.73 89.34 31 2.95 89.16
8 16 2.36 91.70 29 2.52 91.68
9 31 1.73 93.43 16 2.04 93.72
10 17 1.43 94.86 30 1.67 95.39
11 6 1.19 96.05 14 1.49 96.88
12 28 0.91 96.96 1 1.03 97.91
13 14 0.85 97.81 17 0.52 98.43
14 1 0.60 98.41 18 0.41 98.84
15 18 0.48 98.89 7 0.30 99.14
16 7 0.29 99.18 19 0.22 99.36
17 19 0.23 99.41 8 0.13 99.49
18 20 0.15 99.56 20 0.13 99.62
19 21 0.13 99.69 9 0.08 99.70
20 8 0.09 99.78 21 0.08 99.78

used registers, and τg (> 1) represents the slow cycle time. The first-order average
cycle time τ is given as2:

τ = rhτf + (1− rh)τg

If τ < 1, then the average cycle time for the nested design is faster than that of the
non-nested base design. An analogous calculation can also be done for normalized
energy using Ef (< 1) and Eg (> 1). Given performance and energy measurements
of a non-uniform access register file, one can compute breakeven probabilities for
rh to determine when nesting is likely to be beneficial:

r̂h =
τg − 1

τg − τf
2 This is ignoring hysteresis effects of cycle times from transitioning between fast and

slow accesses, which may result in, effectively, slightly longer cycle times.

97

Since benchmarks only represent averages over a limited subset of benchmarks,
one should also consider the performance sensitivity in the neighborhood of the
breakeven probability r̂h, which is heavily dependent on the slower cycle time τg.

8.2 Unbalancing Completion Trees

We can already create non-uniform cycle time accesses to the register core with-
out any transformations at the CHP or HSE levels. Thus far in this thesis, all of
the control propagation completion trees we have used have been balanced trees
of equal depth. Since the function of completion trees is just to guarantee valid-
ity of signals, one has a lot of freedom in their implementation. Changing the
implementation does not affect the abstraction of the overall QDI asynchronous
handshaking, thus, the correctness remains automatically preserved. Figure 8.1
illustrates the conceptual difference between balanced and unbalanced trees. The
unbalanced tree contains a fast path (with lower tree depth than the balanced tree)
and a slow path through both subtrees. Not only does the faster path reduce cycle
time, but it also reduces energy in the average case.

The simplest unbalanced tree we introduce is a two-level tree, with leaves at
one of two distances from the root. The top subtree is almost the same as the
bottom subtree, except that it can take in one more input from the root of the
bottom subtree. For the unbanked register core with 32 registers, this translates
a 16-input OR-tree connected to a 17-input OR-tree.

control propagation array

validity completion

OR

ha
nd

sh
ak

e
co

nt
ro

l

(a) Balanced completion trees

slow path
fast path

OR

OR

validity completion

ha
nd

sh
ak

e
co

nt
ro

l

control propagation array

(b) Unbalanced completion trees

Figure 8.1: The balanced completion tree has all paths of equal length, whereas the
unbalanced tree shown has fast and slow paths which account for non-uniform cycle
times. Data components are not shown.

One need not stop at introducing two levels in the unbalanced completion tree;
trees may be designed with arbitrary balancing. Just as one constructs optimal
Huffman codes based on symbol probabilities, one can analogously design comple-
tion trees to take advantage of any register (or datapath bus) usage distribution to

98

optimize for performance or energy. One fact to bear in mind is that completion
trees constitute only a fraction of the cycle time and cycle energy, thus, there may
exist opportunities elsewhere in the circuits to apply unbalanced design in favor of
more common paths.

8.3 Results

We have simulated all previous designs of the read and write ports redesigned with
unbalanced completion trees. 32-input OR trees have been split into two levels of
16-input OR trees, and 16-input OR trees (from Chapter 4.4) have been split into
two levels of 8-input OR trees. Since the 16-input OR trees were implemented in
four stages of gates, we do not expect the unbanked (size 32) read and write ports
with unbalanced trees to operate much (if at all) faster than those with balanced
trees. Unbalancing completion trees in this case does not create a shorter fast
path, so adding a longer slow path is unlikely to offer speedup or energy reduction.
These simulations are uninteresting, but nonetheless they appear in the write port
results tables in Appendix J in row entries with width 32a. However, the 8-input
OR trees were implemented in only two stages of gates, thus we expect the banked
(size 16) read and write ports with unbalanced trees to operate faster through the
fast paths than those with balanced trees. Unbalanced trees create an opportunity
to achieve average case speedup if sufficiently many accesses hit in the fast path.
We also compute the breakeven probabilities (described in Section 8.1) for which
average non-uniform accesses will be faster than uniform accesses. The read and
write latencies remain the same because the bank sizes of the register cell arrays
have not been changed.

Something to bear in mind about the breakeven probabilities for the results we
show is that the potential gains and losses from non-uniform read accesses as a
result of unbalanced completion trees is rather insignificant for our small register
banks. However, completion trees for larger banks have greater potential to benefit
(or worsen) by unbalancing.

8.3.1 Non-WAD Reading

Table 8.3 shows the non-WAD read port performance and energy results for the
half-buffer and full-buffer reshufflings. The same results also appear in Table J.2.
Performance and energy differences between non-uniform and uniform read port
accesses and their breakeven probabilities appear together in Table J.11, listed in
rows with width 16a. (The ‘a’ in ‘16a’ stands for asymmetric control completion
with unbalanced completion trees.)

Half-buffer. The fast path’s cycle time is 0.994 of the uniform-access cycle
time, and the slow path’s cycle is 1.070 of the uniform-access cycle time. For the
average cycle time of the non-uniform accesses to beat the uniform access cycle
time, 91.6% of accesses must hit in the fast path. The fast path’s energy per cycle

99

is 0.980 of the uniform-access energy, and the slow path’s energy per cycle 1.024
of the uniform-access energy. For the average energy of the non-uniform accesses
to beat the uniform access energy, 55.0% of accesses must hit in the fast path.

Full-buffer. The fast path’s cycle time is 0.995 of the uniform-access cycle
time, and the slow path’s cycle is 1.043 of the uniform-access cycle time. For the
average cycle time of the non-uniform accesses to beat the uniform access cycle
time, 88.9% of accesses must hit in the fast path. The fast path’s energy per cycle
is 0.978 of the uniform-access energy, and the slow path’s energy per cycle 1.008
of the uniform-access energy. For the average energy of the non-uniform accesses
to beat the uniform access energy, 26.6% of accesses must hit in the fast path.

Table 8.3: Read-access performance and energy comparisons for the non-uniform non-
WAD register file with 16 registers. Upper numbers are figures for the faster half.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

18 1.809 552.7 15.60 51.1
half

22 1.949 513.2 16.31 61.9
16 1.689 592.0 15.43 44.0

full
20 1.771 564.6 15.90 49.9

8.3.2 Non-WAD Writing

Table 8.4 shows the non-WAD write port performance and energy results for the
half-buffer and full-buffer reshufflings. The same results also appear in Table J.12.
Performance and energy differences between non-uniform and uniform write port
accesses and their breakeven probabilities appear together in Table J.22, listed in
rows with width 16a. (The ‘a’ in ‘16a’ stands for asymmetric control completion
with unbalanced completion trees.)

Half-buffer. The fast path’s cycle time is 0.998 of the uniform-access cycle
time, and the slow path’s cycle is 0.997 of the uniform-access cycle time. For the
average cycle time of the non-uniform accesses to beat the uniform access cycle
time, 0.0% of accesses must hit in the fast path. The fast path’s energy per cycle
is 0.986 of the uniform-access energy, and the slow path’s energy per cycle 0.998
of the uniform-access energy. For the average energy of the non-uniform accesses
to beat the uniform access energy, 0.0% of accesses must hit in the fast path.

Full-buffer. The fast path’s cycle time is 0.999 of the uniform-access cycle
time, and the slow path’s cycle is 1.018 of the uniform-access cycle time. For the
average cycle time of the non-uniform accesses to beat the uniform access cycle
time, 95.7% of accesses must hit in the fast path. The fast path’s energy per cycle
is 0.954 of the uniform-access energy, and the slow path’s energy per cycle 0.987

100

of the uniform-access energy. For the average energy of the non-uniform accesses
to beat the uniform access energy, 0.0% of accesses must hit in the fast path.

Table 8.4: Write-access performance and energy comparisons for the non-uniform non-
WAD register file with 16 registers. Upper numbers are figures for the faster half.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

20 2.175 459.8 11.08 52.4
half

22 2.172 460.3 11.22 52.9
20 2.116 472.5 10.78 48.3

full
20 2.156 463.8 11.15 51.8

8.3.3 WAD Reading

Table 8.5 shows the WAD read port performance and energy results for the half-
buffer and full-buffer reshufflings. The same results also appear in Table J.3.
Performance and energy differences between non-uniform and uniform read port
accesses and their breakeven probabilities appear together in Table J.11, listed in
rows with width 16a.

Half-buffer. The fast path’s cycle time is 0.978 of the uniform-access cycle
time, and the slow path’s cycle is 1.076 of the uniform-access cycle time. For the
average cycle time of the non-uniform accesses to beat the uniform access cycle
time, 77.7% of accesses must hit in the fast path. The fast path’s energy per cycle
is 0.970 of the uniform-access energy, and the slow path’s energy per cycle 1.018
of the uniform-access energy. For the average energy of the non-uniform accesses
to beat the uniform access energy, 38.0% of accesses must hit in the fast path.

Full-buffer. The fast path’s cycle time is 0.994 of the uniform-access cycle
time, and the slow path’s cycle is 1.038 of the uniform-access cycle time. For the
average cycle time of the non-uniform accesses to beat the uniform access cycle
time, 87.1% of accesses must hit in the fast path. The fast path’s energy per cycle
is 0.982 of the uniform-access energy, and the slow path’s energy per cycle 1.011
of the uniform-access energy. For the average energy of the non-uniform accesses
to beat the uniform access energy, 38.2% of accesses must hit in the fast path.

8.3.4 WAD Writing

Table 8.6 shows the WAD, unconditional write-enable write port performance and
energy results for the half-buffer and full-buffer reshufflings and Table 8.7 shows
the same results for the conditional write-enable variation. The same results also

101

Table 8.5: Read-access performance and energy comparisons for the non-uniform WAD
register file with 16 registers. Upper numbers are figures for the faster half.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

18 1.981 504.8 19.29 75.7
half

22 2.179 458.8 20.25 96.2
16 1.861 537.3 19.26 66.7

full
20 1.942 514.9 19.83 74.8

appear in Tables J.13 and J.14. Performance and energy differences between non-
uniform and uniform write port accesses and their breakeven probabilities appear
together in Table J.22, listed in rows with width 16a.

Half-buffer, unconditional write-enable. The fast path’s cycle time is
0.998 of the uniform-access cycle time, and the slow path’s cycle is 1.009 of the
uniform-access cycle time. For the average cycle time of the non-uniform accesses
to beat the uniform access cycle time, 81.1% of accesses must hit in the fast path.
The fast path’s energy per cycle is 0.996 of the uniform-access energy, and the slow
path’s energy per cycle 1.000 of the uniform-access energy. For the average energy
of the non-uniform accesses to beat the uniform access energy, 9.0% of accesses
must hit in the fast path.

Full-buffer, unconditional write-enable. The fast path’s cycle time is 0.999
of the uniform-access cycle time, and the slow path’s cycle is 1.017 of the uniform-
access cycle time. For the average cycle time of the non-uniform accesses to beat
the uniform access cycle time, 94.4% of accesses must hit in the fast path. The fast
path’s energy per cycle is 0.993 of the uniform-access energy, and the slow path’s
energy per cycle 0.988 of the uniform-access energy. (This figure may be the result
of numerical noise.) For the average energy of the non-uniform accesses to beat
the uniform access energy, 0.0% of accesses must hit in the fast path, because both
cases consume less energy. It is entirely possible to have slightly reduced energy
in the slow path of the unbalanced 16-input OR-tree because the number of logic
gates (and in our case, their sizes) through the slow path is the same as a balanced
four-stage, 16-input OR-tree, but the wiring is reduced because connections are
more localized for unbalanced trees.

Half-buffer, conditional write-enable. The fast path’s cycle time is 1.000
of the uniform-access cycle time, and the slow path’s cycle is 1.025 of the uniform-
access cycle time. For the average cycle time of the non-uniform accesses to beat
the uniform access cycle time, 98.1% of accesses must hit in the fast path. The fast
path’s energy per cycle is 0.970 of the uniform-access energy, and the slow path’s
energy per cycle 1.003 of the uniform-access energy. For the average energy of the
non-uniform accesses to beat the uniform access energy, 9.2% of accesses must hit

102

Table 8.6: Write-access performance and energy comparisons for the non-uniform WAD
(unconditional write-enable) register file with 16 registers. Upper numbers are figures
for the faster half.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

20 2.283 438.0 13.12 68.4
half

22 2.310 433.0 13.17 70.3
20 2.278 438.9 13.36 69.3

full
20 2.319 431.2 13.30 71.5

Table 8.7: Write-access performance and energy comparisons for the non-uniform WAD
(conditional write-enable) register file with 16 registers. Upper numbers are figures for
the faster half.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

22 2.242 446.1 12.63 63.5
half

24 2.299 434.9 13.07 69.1
20 2.313 432.4 12.81 68.5

full
22 2.383 419.6 13.21 75.0

in the fast path.

Full-buffer, conditional write-enable. The fast path’s cycle time is 0.997
of the uniform-access cycle time, and the slow path’s cycle is 1.027 of the uniform-
access cycle time. For the average cycle time of the non-uniform accesses to beat
the uniform access cycle time, 90.3% of accesses must hit in the fast path. The fast
path’s energy per cycle is 0.948 of the uniform-access energy, and the slow path’s
energy per cycle 0.978 of the uniform-access energy. For the average energy of the
non-uniform accesses to beat the uniform access energy, 0.0% of accesses must hit
in the fast path, because both cases consume less energy.

8.4 Summary

We have shown that by unbalancing completion trees to create non-uniform access
registers in the same bank, there is little potential to achieve significant speedup
or energy reduction, however, even the worst cases through the slow paths are not
much worse than those with balanced completion trees. The breakeven probabil-
ities may be slightly misleading because they are highly sensitive to small gains
and losses (normalized cycle times and energies close to 1.0). Nevertheless, tree
unbalancing will be important for the next chapter, when we introduce a more

103

extreme form of non-uniform access registers, nesting.

Chapter 9

Core Partitioning via Nesting

Last chapter, we described how to achieve non-uniform register access cycle times
by unbalancing the completion trees of the control propagation output. With
sufficiently skewed register usage distributions, a non-uniform cycle time register
file may be faster on average than the balanced cycle time version. However,
merely unbalancing the completion trees has no impact on the speed of the read
and write bit lines because they are still shared across a large array of registers.
Often times, a designer cares about keeping low latency, the delay from word line
to data availability, of read and write operations. (This is especially crucial in
large memories such as DRAMs.) Data dependencies create natural cycles on
the datapath, whose performance may depend on the sum of latencies across all
(horizontal) data pipeline stages on the datapath.

In this chapter we continue with the idea of non-uniform access time register
cores, with the addition of non-uniform bit-line latencies. To achieve this, we
must partition the bit lines to reduce the shared load in the common case, while
providing longer latency, yet QDI, accesses to another partition, while preserving
the original channel interface requirements. We call this method nesting because
it effectively creates a hierarchy of register banks through the interface of a single
register file. At the top of the hierarchy will be a partition that is smaller and
hence faster than the unpartitioned register core, and deeper in the hierarchy can
be other partitions that are slower to access. If one can arrange accesses to a
nested register core to utilize the faster partition most of the time, then there is
potential to achieve an overall reduction of latency in the average case.

9.1 Related Work and Applications

The Cray-1 implemented two-levels of registers that required explicit instructions
to transfer data between levels [43, 44]. Swenson and Patt (1988) also proposed
using hierarchical register files to cater to the demand for relatively few fast register
backed by a large number of slower registers [47]. They observed that sections of
code with high ILP did not suffer much loss in performance from having multi-
cycle register accesses, whereas serially dependent sections of code (low ILP) were

104

105

not accelerated by increasing the number of registers. Proper scheduling of serially
dependent instructions through a small set of fast registers is likely to speed up
execution of these critical sections of code, while a larger and longer latency register
file can catch accesses that might otherwise use the cache or main memory.

Rixner, Dally, et al. evaluated the use of hierarchical register files (instead of the
cache) for media applications that exhibit little data reuse (temporal locality) by
prefetching directly into lesser-ported register files with more registers [42]. They
also provided models for how the delay, energy, and area of hierarchical register
files scale with number of registers and ports.

For synchronous designs without support for variable, multi-cycle register ac-
cesses, reducing register read latency on some register accesses is unlikely to speed
up the datapath, because operands are synchronized at the same latches regardless
of their true arrival times. However, if the slowest path introduced by nesting (e.g.,
with a pass gate on the bit line) meets the cycle time requirement, then significant
bit line energy may be saved on average [50].

Synchronous designs that support multi-cycle register files introduce multi-level
register bypasses, which further increases bypassing delay, branch mispredict penal-
ties, and register lifetimes in superscalar processors [1]. As feature sizes shrink,
multi-level bypasses are more likely to limit clock frequencies because of their
wire-dominated interconnect requirements [36]. An alternative to full-bypassing a
multi-cycle register file is to use only partial bypassing to reduce the bypass com-
plexity, however this introduces cycles during which data becomes momentarily
unavailable, which pushes significant complexity into the issue logic [8].

The benefit of a QDI asynchronous implementation of variable latency (and
cycle time) register files is that the speed up of a partition of the register file may
lead to an average reduction of forward latency through the datapath, and hence
speedup, without additional retiming or bypass-forwarding support.

Cooper and Harvey proposed a compiler-controlled memory (CCM), which
serves as a separate memory space apart from the cache, which is available to
use by a compiler for spilling registers without polluting the cache [7]. One pos-
sible application for a slower second-level register file may be to serve as a CCM
to support the primary register file, when it cannot afford to be enlarged due to
timing constraints.

As parallel architectures further increase the demand for number of registers
and ports, even banked (or other uniformly partitioned) designs suffer from the
increase in interconnect requirements. Capitanio, et al. explored the tradeoff
between full connectivity and limited connectivity in early VLIW (very-long in-
struction word) machines [5]. Zalamea, et al. proposed a two-level hierarchy of
heterogeneous register files for VLIW machines [56]. Their second-level register
file (called R2) had greater capacity but fewer ports than the primary register file
(R1), and was not directly accessible by the functional units. R2 served as an
intermediate memory between the R1 and the L1 cache, which required explicit
load/store operations to move data between levels. They chose the largest sizes
for R1 and R2 that allowed the access times to fit in the target cycle time.

106

Perhaps one of the most register-demanding parallel architectures proposed is
that of simultaneous multi-threading (SMT), which supports issuing of instructions
from multiple logical threads to fill instruction slots when ILP alone is insufficient
to fill the issue bandwidth [51]. An SMT core requires at least as many physical
registers as the number of logical registers per thread times the number of threads,
and often requires more (sometimes exceeding 200 or 300) to keep the issue queue
from stalling due to a shortage of free registers for dynamic allocation. Instead of
resorting to uniformly multi-cycle latency register file accesses, implementations
with variable access-time registers (assuming some intelligent register allocation
policy) may offer average-case speedup.

Other possible applications for adding a slower second level of registers (that
interface through the same hardware as the primary register file) include extending
an ISA with special purpose registers, providing privileged registers for kernel
instructions, or system profiling. For processors that keep multiple versions of
internal state for swapping, backing-up, or checkpointing [33], a nested register file
would provide a means to save and restore state with no impact on the interconnect
requirement for implementation.

9.2 Nesting CHP Decomposition

The elegance of nesting register core partitions is that the transformation is ex-
clusively local to the CORE . The channel interfaces to the CORE and BYPASS
remain unchanged, therefore CORE nesting is completely transparent to CORE ’s
environment.

A diagram of vertically pipelined, nested read and write port operations is
illustrated in Figure 9.1. Within the CORE we split the shared data channels,
the read and write bit lines, into two halves: R and W remain the same as the
non-nested data channels, but are now shared among half as many registers, and
IR and IW are the new inner copies of the channels, shared among the other half

of the registers.1 We divide the word select control channels similarly: RC and
WC represent the select channels for the outer, non-nested half of the registers,
and IRC and IWC controls the inner, nested half.

Another way to interpret the nesting transformation is using width adaptivity,
from Chapter 5. With WAD, the data values have variable length. Analogously,
with nesting, the control indices to an arrayed structure (the core), have variable
length, i.e., a nested array is depth-adaptively addressed with a width-adaptive
index, which encodes the depth into the nested array.

1 Recall that the R is the inverted pseudo-channel whose bit rails are shared across
the register array for each read port.

107

(a)

(b)

RCi

RCo

RCi
RCo

IRCo

IRCi
IRCo

IRCi

IR

IR

R

R

W

W

WCo

WCi
WCo

WCi

IW

IW

IWCi

IWCo
IWCi

IWCo

Figure 9.1: Block diagram of vertically pipelined, and nested read and write processes.

9.2.1 Unconditional Control Propagation

Following the CHP template for vertically pipelining with locking, Program 3.6,
we extend the template for data-nested process in CHP Program 9.1. Read and
write accesses to the outer partition (which we arbitrarily designate as the lower
16 registers) behave like the normal non-nested reads and writes, and do not com-
municate with the inner partition. Read and write accesses to the inner partition,
however, will also activate the outer partition through a CONNECT interface pro-
cess. Note that the CHP for the inner and outer BLOCK s are actually equivalent;
the inner partition is connected to its own set of private channels. The resulting
non-WAD nested read port is shown in Program D.11 and the nested write port
is shown in Program D.12.

The CONNECT processes are activated by the inner partition word lines (1of16
channels) IRCi and IWCi . On a read access to the inner partition, data origi-
nates in the inner partition and is forwarded to the outer partition R!(IR?) by
CONNECT .2 Analogously, a write to the inner partition is forwarded from the
outer partition IW !(W ?) by the interconnect. Instead of using a true handshake in
the interconnect, we devise a lightweight interconnect between the partitions that
requires no completion trees in the inner partition and minimizes the modifications
in the outer partition.

The process specification of the demux for the nested core is listed in Pro-

2 We have written this communication in this manner to specify that the data token
is not buffered, i.e. there is no full handshake between the inner and outer partitions.

108

Program 9.1 CHP: template for pipelined, non-WAD, nested process with locking at
the sender
BLOCKouter ≡

*[C ′; 〈outer data action〉; C ′′]

‖ *[[Ci]; C ′; [unlocked()]; lock ; (Co , (C ′′; Ci)); unlock]
CONNECT ≡

*[[ICi]; (〈relay inner/outer data〉, ICo , ICi)]
BLOCKinner ≡

*[IC ′; 〈inner data action〉; IC ′′]

‖ *[[ICi]; IC ′; [unlocked()]; lock ; (ICo , (IC ′′; ICi)); unlock]

gram D.13. When we index the inner partition, not only do we need to commu-
nicate the inner partition select lines IRC or IWC , we still need to communicate
to the outer partition with RC inner or WC inner that we will be using the outer
partition’s shared data channels R and W . RC inner and WC inner act like 17th
word select lines for the outer partition and will be mutually exclusive with the
other select lines RC and WC (now also 1of16 channels) to maintain exclusion for
driving R and reading W .

9.2.2 WAD Control Propagation

Nesting and width adaptivity are orthogonal transformations, and we give the
template for their combined transformation in Program 9.2. The CONNECT
data interface is the same as the non-WAD version. Again, the data components
of the BLOCK processes for the inner and outer partition accesses are equivalent;
each partition connects to its own set of channels. Applying this transformation
results in Program D.14 for the WAD nested read port, and Program D.15 for the
WAD nested write port. Control propagation for the inner partition read depends
on p(reg[l]), which is the same as the non-nested version. Control propagation
for the inner partition write depends on p(IW), which is just the inner partition’s
copy of the input write delimiter bits.

9.3 Handshaking Expansion Modifications

In this section, we present the handshaking expansions for the various nested read
and write ports without going into the details of their derivation. Their deriva-
tions are repetitive and mostly follow the same style as those of the non-nested
designs, such as control-data decoupling. New transformations revolve around the
fact that internal actions may be freely re-ordered and decoupled as long as the
communication interface to the environment is preserved. Another guideline is to
keep the existing components unchanged if possible, and otherwise introduce min-
imal changes while maintaining correctness. Step-by-step derivations of the nested

109

Program 9.2 CHP: template for pipelined, WAD, nested process with locking at the
sender
BLOCKouter ≡

*[C ′; 〈outer data action〉; C ′′]

‖ *[[Ci]; C ′;
[p(. . .) ∧ unlocked() −→ lock ; (Co , (C ′′; Ci)); unlock
[]t(. . .) −→ C ′′; Ci

]]

CONNECT ≡
*[[ICi]; (〈relay inner/outer data〉, ICo , ICi)]

BLOCKinner ≡
*[IC ′; 〈inner data action〉; IC ′′]

‖ *[[ICi]; IC ′;
[p(. . .) ∧ unlocked() −→ lock ; (ICo , (IC ′′; ICi)); unlock
[]t(. . .) −→ IC ′′; ICi

]]

read and write port HSEs appear in the technical report [11].

9.3.1 Unconditional Read Control Propagation

Recall that the read port’s HSE fit the template for a control-data fork process,
which we transformed into Program 4.5 with full-buffering and Program 4.6 with
full-buffered data output and half-buffered control propagation. Read accesses to
the outer partition should still behave like their non-nested counterparts for all
reshufflings.

Now we extend the HSE to include accesses to the inner partition, and com-
bine all of the sub-processes in CHP Program D.11. The final HSE is listed in
Program E.7. We have decoupled irenD and irenC as we have done before with
renD and renC in Section 4.1.2. The action IRC↑ represents the raising of one
of the inner partition’s register read select control rails. The old RCi has been
broken down into the cases RCi ,outer and RCi ,inner , which are mutually exclusive.
RCinner is implicitly raised when IRC is used. During a read access to the inner
partition, the input acknowledges, RC e

i and IRC e
i , which both acknowledge ↓, are

decoupled from each other, and IRC e
i ↓ need not check data output validity Ro↑

nor IRo↑. In the reset phase of the data component, we allow IRo↓ and Ro↓ to
reset independently of one another.

To prove that the new HSE is compatible with the data environment, we show
that by factoring out all the actions on iren and the internal channels IRC and IR
in the RCi ,inner cases, we are left with the HSE of Program 4.5. It is no coincidence
that the control and data actions in the RCi ,inner cases resemble the same action
sequences in the same phases of the non-nested handshaking expansion. This self-

110

similarity leads to equivalent components in the floor decomposition.
We can analogously derive the HSE for the nested half-buffer read port (with

full-buffered data output), listed in Program E.8. One feature of interest is that
while the RC channel is half-buffered, we intentionally keep the IRC communica-
tion full-buffered, i.e., IRC e

i ↑ does not wait for IRCo↓ in the reset phase. Since
accesses to the inner partition are expected to be slower than the outer parti-
tion accesses, and the inner handshake is control-limited in cycle time, we choose
full-buffering as the faster option for the inner partition.

The HSEs we have shown here, however, are not the final versions we use for
floor decomposition. The final major transformation involves re-ordering the HSE
so that irenD↓ ≺ renD↓ and irenC↓ ≺ renC , to facilitate maintaining atomicity of
renC↓ and renD↓. The same transformation is used for both non-WAD and WAD,
nested read ports. A full-length discussion of this transformation can be found
in the floor decomposition section of the corresponding chapter in the technical
report [11].

9.3.2 Unconditional Write Control Propagation

We left off with the CHP Program for the nested write port in Program D.12.
The pipelined write port’s HSE fit the template for a control-data join process,
which we transformed into Program 4.9 with full-buffering and Program 4.10 with
half-buffered control propagation. Write accesses to the outer partition should
behave like the non-nested write port for both reshufflings. Following the same
transformations we used in Section 4.1.3, we have decoupled the data component
from the control propagation and wen, introduced a write-validity signal wvc,
combined the input acknowledges into WC e

i (≡ W e
i) to obtain Program E.9 for

the full-buffered reshuffling. The action IWC↑ represents the raising of one of the
inner partition’s register write select control rails. Again, WCi has been broken
down into the cases WCi ,outer and WCi ,inner , which are mutually exclusive. WCinner

is implicitly raised when IWC is used.
We can verify that the nested write port is compatible with the original data

environment by factoring out the actions of iwen, and the internal channels IWC ,
and IW in the WCi ,inner cases. The guarded action sequences for writes to the
inner and outer partitions are similar, which comes as no surprise. We decouple
the acknowledging actions of IWC e

i ↓ and WC e
i ↓ for greater concurrency. The

handshake on IWC is full-buffer-like in that IWC e
i need not wait for IWCo↓.

Note that on a write to the inner partition, IWC e
i ↓ need not wait for IW ↑ and

IWC e
i ↑ need not wait for IW ↓, which means that we have completely decoupled

the control and data in the inner partition. However, control and data are still
always synchronized with WCi and wvc before WC e

i ↓ because they share the same
acknowledge.

The half-buffer version of the nested write port is similarly derived in Pro-
gram E.10. Again, for greater concurrency, we keep IWC full-buffered by not
waiting for ¬IWCo before requesting the next input with IWC e

i ↑ in the reset

111

phase.

9.3.3 WAD Read Control Propagation

Now we apply the width-adaptive transformation to the nested read port. After
decoupling the inner partition enables into irenC and irenD and applying the same
transformations used for the non-WAD nested read port in Section 9.3.1, the re-
sulting HSE for the full-buffer reshuffling is Program E.11. Control propagation for
the inner partition is conditional on the value of the delimiter bit of the accessed
register in the inner partition. p(reg) denotes the propagation condition and t(reg)
denotes control termination. Resetting the inner enable iren↓ only waits for the
inner partition acknowledge ¬IRC e

o in the propagation case, analogous to the outer
partition’s reset of ren↓.

The half-buffered version of the WAD nested read port can be derived with
the same routine transformations, and is listed in Program E.12. The data output
handshake remains full-buffered.

9.3.4 WAD Write Control Propagation

Recall that in Section 5.4.2, we presented two reshufflings for the WAD write port:
the unconditional write-enable and conditional write-enable variations, depending
on when wen↑ was allowed to set. With nesting, we introduce the inner partition’s
write-enable iwen, which introduces a choice for when iwen↑ is allowed to be set,
thus yielding three possible reshufflings of the WAD nested write port. Recall that
the conditional write-enable variation for the non-nested write port had a simpler
handshake control circuit and slightly slower cycle time. Assuming writes to the
inner partition to be less frequent than writes to the outer partition, and critical
writes to be already bypassed to the operand buses, we can afford to use the slower
conditional write-enable variation for the inner partition with little expected loss
in performance. Thus, we restrict our attention to the subset of two conditional
inner write-enable reshufflings of the WAD, nested write port.

The final HSE for the WAD, nested, unconditional outer write-enable, full-
buffered write port is shown in Program E.13, and the preliminary HSE for the
conditional outer write-enable, full-buffered version is shown in Program E.15.
(This time, we do not show the half-buffered counterparts because they are trivially
similar.) For both HSEs, the iwen↑ is conditional on the inner partition’s delimiter
bit.

The data components and full-buffer reset phases of the control component for
both versions appear identical at the HSE level. The main difference lies in when
wen↑ occurs in the setting phase of the outer partition control, but we also point
out more subtle differences.

In the unconditional outer write-enable version, the propagation condition
p(Wi) directly guards WCo↑, whereas IWCo need not be guarded directly by

112

p(IW) because iwen↑ already implies p(IW). We allow the inputs to be acknowl-
edged (IWC e

i ↓ and WC e
i ↓) independently of one another. The resetting of wen↓

only waits for ¬WC e
o in the propagation case and in the termination case for the

inner partition, [¬IWC e
o]; iwen↓ is vacuous because iwen is never raised.

For the conditional outer write-enable, the p(IW) guard is actually redundant
because wen and WCi ,inner already imply p(IW), however the t(IW) guard of skip
is still needed. The sequence in the control termination case of the reset phase, both
[¬WC e

o]; wen↓; unlock ; WCo↓ and [¬IWC e
o]; iwen↓; unlock ; IWCo↓ are vacuous

sequences because wen↑ and iwen↑ never occur, so the behavior reduces to that of
the terminal block of the write port. Even though we have separated the control
and data in both partitions, we still share the inner partition’s delimiter rails of
IW because the inner partition’s control enable iwen is conditional on p(IW). We
take this into account in the floor decomposition and production rule generation.

9.4 Floor Decomposition

Since one of our goals is to introduce as little modification as possible to the
non-nested designs to achieve nested designs, floor decomposition helps to iden-
tify which components the non-nested and nested designs have in common, which
components require modification or replacement, and what new components are
necessary to implement nesting. For nesting, we introduce a new floorplan, shown
in Figure 9.3 for the read port and Figure 9.4 for the write port. The left halves of
these figures are exactly the same as the floorplans shown in Figures 4.5 and 4.8.
All we have done is split the old control propagation array and data cell array
into inner and outer banks, and introduced nested interconnect components. The
nested interconnect is a new component which will behave like another register and
control propagation cell from the outer partition’s perspective, and will behave like
an external data interface array from the inner partition’s perspective.

9.4.1 Read Data Nesting

We start with the data decomposition of the non-WAD core read port. Figures 9.5
and 9.6 give a visual outline of the final floor decomposition for the PCEVFB and
PCEVHB reshufflings. This section discusses the decomposition of the bottom
halves of these floor decompositions, the data array, interface and interconnect.

We showed in Chapter 5 that the width-adaptive transformation introduced
no modifications to the partial HSE of the data cell array component, aside from
sharing the internal delimiter bits, dx 0 and dx 1, to the control propagation array.

We also showed that no modifications are necessary in the cell arrays when we
introduce nesting. If we compare Programs E.7 and E.8 for the non-width-adaptive
versions, and Programs E.11 and E.12 for the width-adaptive versions, the guard
for setting the inner partition’s shared read rails IRo↑ is [irenD ∧ IRCi ∧ reg],
and the guard for resetting the read rails IRo↓ is [¬irenD], which is independent

113

cell array
inner

ne
st

ed
 in

te
rc

on
ne

ct

ar
ra

y
da

ta
 in

te
rf

ac
e

control
handshake

cell array
outer

xvt xpi xnixcell

ycp

ycell

yht

Figure 9.2: Floorplan of a nested 4-bit x 16-word pipeline block of the register core,
with the outer partition on the left side and the inner partition on the right. New or
modified components that arise from nesting are darkly shaded, while all other com-
ponents corresponding to Figure 4.4 remain unchanged. The WAD, nested floorplan
includes one more row of delimiter bit cells in the cell array. The dimensions for the
various components are listed in Table 4.1.

interface
read/write

nested

control

connect

connect
nested
dataregister data

outer cell array

outer control
propagation array

inner cell array
register data

propagation array
inner control

control

handshake

array

RCo

RCi

IRCvo
IRCeo

IRCvi
IRCei

irenD

IR

irenC

IRCvoIRCvo

renC

renD

R

IRCo

IRCiRCvi
RCei

RCvo

R

renD

RCeo

Re

Rv
R

renC

RCvo

renv
Rv

Figure 9.3: Floor decomposition of a data-nested core read port

of IRCi . This means that the partial HSE for the inner partition’s cell array
is equivalent to that of the outer partition, which was shown in Program 4.12.
Therefore, we can use the same template HSE as the old cell array for both the inner
and outer partitions, and just connect the inner cell array to the inner partition’s
control signals, irenD and IRCi , and register state variables.

Since all read accesses to the inner partition also use the outer partition’s

114

data

read/write
interface
array

handshake
control

register data
outer cell array

outer control
propagation array

register data
inner cell array

propagation array
inner control

nested
control
connect

connect
nested

IWCvo
IWCeo

IWCvi
IWCei

IW

iwv

iwen

IWCvoIWCvo

wen

W

wv

IWCo

IWCi

WCo

WCiWCvi
WCei

WCvo

wv

W

WCeo

W

wen

W e

WCvo

wvc

Figure 9.4: Floor decomposition of a data-nested core write port

HSE E.7 decomposition

HSE 4.15
PRS H.7
Fig. 4.12

Fig. 4.11
PRS H.1
HSE 4.12

HSE F.15
PRS H.12
Fig. 9.20

Fig. 9.15
PRS H.3
HSE F.12HSE 4.12

PRS H.1
Fig. 4.11

HSE 4.15
PRS H.7
Fig. 4.12

Fig. 4.14
PRS H.18
HSE 4.13

HSE 4.17
PRS H.20
Fig. 4.15

Figure 9.5: Floor decomposition of a PCEVFB nested read port

shared read channel R, we need to complete the nested connect interface to the
outer partition. The guards for the outer partition’s read rails Ro now appear in
the outer partition and inner partition cases. The guards for the outer partition
case remain unchanged from the non-nested designs, so we examine the guards
from the inner partition. Comparing across the same HSEs mentioned above, the
inner partition’s guard for setting Ro↑ is always [renD ∧ IRo], and the guard for
resetting Ro↓ remains as [¬renD]. For setting Ro↑ we do not need an explicit
guard of RCi ,inner because IRo↑ already implies RCi ,inner .

Because the partition cases are mutually exclusive, we have also guaranteed that
no other control for the outer partition can drive Ro↑ while the inner partition is
selected. It will require a little additional work to guarantee that the inner partition

115

HSE E.8 decomposition

HSE 4.15
PRS H.7
Fig. 4.12

Fig. 4.11
PRS H.1
HSE 4.12

HSE F.15
PRS H.12
Fig. 9.20

Fig. 9.15
PRS H.3
HSE F.12HSE 4.12

PRS H.1
Fig. 4.11

HSE 4.15
PRS H.7
Fig. 4.12

Fig. 4.14
PRS H.18
HSE 4.13

HSE 4.18
PRS H.21
Fig. 4.16

Figure 9.6: Floor decomposition of a PCEVHB nested read port

does not attempt to drive Ro↑ during an outer partition access because IRo is not
directly guarded by RCi ,inner . We need to guarantee that IRo↓ has reset before
enabling the outer partition to drive Ro↑. To accomplish this, we introduce a
new signal IRv

o , which represents the validity of the inner partition’s read rails,
and obeys the sequencing [IRo]; IRv

o↑; [¬IRo]; IRv
o↓. We explicitly add a [¬IRv

o]

guard before renD↑ to guarantee that the inner partition has stopped driving Ro↑
before allowing an outer partition access. This is very reminiscent of the locking
technique to ensure pipelined mutual exclusion between the partitions’ access to
Ro . One necessary consequence of unlocking ren↑ with [¬IRv

o] is that we have
to connect an inner partition signal all the way out to the outer partition’s data
interface. We later prove that this is the only necessary modification to the data
interface cell. The partial HSE for the read data interface for nested data arrays is
shown in Program F.10. For comparison, the original read data interface is shown
in Program 4.13.

Since the inner partition input acknowledge IRC e
i ↓ does not wait for IRo↑ we

do not need a completion tree across all the read bit lines in the block of the
inner partition. We guarantee that the inner partition input control IRC is not
prematurely reset before IRo is used with the ordering (where the s subscript
denotes signals corresponding to the successor block): IRCi↑ ≺ IRo↑ ≺ Ro↑ ≺
Rv

o↑ ≺ RC e
i ↓ ≺ rens,C↓ ≺ irens,C↓ ≺ IRCi↓. The advantage of enforcing this

sequence is that we can reuse the data output validity completion tree of the outer
partition instead of adding a completion tree just for the inner partition.

Finally, we describe the partial HSE for the nested read data interconnect,
listed in Program F.12. From the outer partition’s perspective, the interconnect
component behaves like a 17th register because it drives R↓ just like any other
register cell. From the inner partition’s perspective, the interconnect component
serves the purpose of interfacing data to the ‘environment’ (the outer partition)
with a handshake-like communication at bit granularity, not block granularity. The

116

HSE for this component is a result of a re-ordering transformation that enforces
the following ordering: renD↑ ≺ irenD↑ ≺ irenD↓ ≺ renD↓. The discussion of
this transformation can be found in the technical report [11]. After this final
transformation, the HSE for the data component of the read port is listed in
Program 9.3.

Program 9.3 HSE: data component of read port with nested data, after final trans-
formations

*[([Re
o ∧ RC e

i ∧ ¬IRv
o]; renD↑);

[RCi ,inner −→ irenD↑; [IRCi]; IRo↑; IRv
o↑; irenD↓; Ro↑

[]RCi ,outer −→ Ro↑
];
[¬Re

o ∧ ¬RC e
i]; renD↓;

([RCi ,inner −→ IRo↓; IRv
o↓

[]RCi ,outer −→ skip
],
Ro↓)

]

We have derived the HSE specification of a nested data array with modest
modifications to the outer partition data interface and the specification of the new
nested interconnect cell for interfacing to inner partition reads. The same HSEs
work for both the WAD and non-WAD nested read ports.

9.4.2 Non-WAD Write Data Nesting

Now we turn our attention to the data decomposition of the non-WAD core write
port. Figures 9.7 and 9.8 give a visual outline of the final floor decomposition for
the PCEVFB and PCEVHB reshufflings. This section discusses the decomposition
of the bottom halves of these floor decompositions, the data array, interface and
interconnect.

When we introduced width adaptivity to the write port in Chapter 5, we showed
that the data component of the HSE requires no modifications (aside from writing
one additional delimiter bit) because writing is unconditional and the control and
data input acknowledges are always synchronized. Nesting adds a new dimension
to our design space and requires careful attention, particularly in the case of width
adaptivity. In this section, we focus on the data component of the floor decom-
position for only the nested, non-width-adaptive write port. We will return to
data component of the nested, width-adaptive write port after we have discussed
the corresponding control component of the floor decomposition in Sections 9.4.6
and 9.4.6.

We start by analyzing the expansions for the nested non-width-adaptive write
ports shown in Programs E.9 (full-buffered) and E.10 (half-buffered), whose data
components are identical in HSE. As expected, write accesses to the outer partition

117

HSE E.9 decomposition

HSE 4.15
PRS H.8
Fig. 4.13

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.16
PRS H.13
Fig. 9.22

Fig. 9.16
PRS H.4
HSE F.14HSE 4.24

PRS H.1
Fig. 4.11

HSE 4.15
PRS H.8
Fig. 4.13

Fig. 4.14
PRS H.18
HSE 4.23

HSE 4.25
PRS H.27
Fig. 4.17

Figure 9.7: Floor decomposition of a PCEVFB nested write port

HSE E.10 decomposition

HSE 4.15
PRS H.8
Fig. 4.13

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.16
PRS H.13
Fig. 9.22

Fig. 9.16
PRS H.4
HSE F.14HSE 4.24

PRS H.1
Fig. 4.11

HSE 4.15
PRS H.8
Fig. 4.13

Fig. 4.14
PRS H.18
HSE 4.23

HSE 4.26
PRS H.28
Fig. 4.18

Figure 9.8: Floor decomposition of a PCEVHB nested write port

behave exactly the same as writes to a non-nested data array. Since WCi ,inner

implies IWCi , the guard for 〈writeinner〉 is [IWCi ∧ IW], which is analogous to
the guard for writing to the outer partition, [WCi ∧Wi]. We expose the write
validity variables wv and iwv to signal when a write is complete to the outer and
inner partitions, just as we did in Section 4.2.2. After we factor out the control
propagation component, the data component is shown in HSE Program F.13, which
covers the data write interface, inner and outer write data arrays, and nested
interconnect.

On a write to the outer partition the sequence IW ↓; iwv↑ is vacuous because
the inner partition is never activated. To make writing the inner partition behave
like writing to any other register in the outer partition, we impose several sequences
on writes to the inner partition. Since iwv signals that the write to the inner
partition has completed, we can use ¬ iwv as a guard for wv↓. The resetting of

118

IW ↓must occur after write has become visible to the outer partition, hence it must
wait until wv↓. Since IW ↓ is a local channel, not controlled by an environment, we
are free to reset it without having to wait for Wi↓. Resetting IW ↓ is independent
of the selected register in the inner partition, so ¬IW may directly guard the
resetting of iwv↑, analogous to ¬Wi guarding wv↑ in the outer partition’s data
interface. However, the outer partition needs to wait until the inner partition has
finished resetting before resetting its validity. Since the write data interface’s only
guarded event is resetting wv↑, the only way we can check that the inner partition
has reset (without adding more events) is by strengthening the guard of wv↑ with
iwv . The consequence of this requirement is that we need to connect iwv (or some

derivative thereof) across the outer partition’s array and to the data interface for
each port, but this is the only additional wire connection that is needed.3 The
HSE for the data interface for writing to a nested array is shown in Program F.11,
and the HSE for the nested interconnect between the inner and outer arrays of the
write port is shown in Program F.14.

Since each bit line completes its own handshake with the inner partition, we
have guaranteed that iwv is already checked in both directions, therefore we have
eliminated the need for completion trees across iwv .

9.4.3 Non-WAD Read Control Nesting

We now present the floor decomposition of the control component of the non-
WAD nested read port, depicted in the upper halves of Figures 9.5 and 9.6. In
Section 4.2.1, the control component consisted of the handshake control and the
control propagation array. With the nested transformation, the control array is
broken up into an inner partition and an outer partition, and we introduce a nested
control interconnect in between the partitions, as shown in Figure 9.3.

To get a clearer picture of what the control handshake is doing, we take Pro-
gram E.7 and factor out the data component’s actions, which leaves us with Pro-
gram 9.4 for the full-buffer reshuffling. Recall that in both cases, we chose to
full-buffer the inner partition’s control handshake for more concurrency and better
performance. We already understand that an access to the outer partition behaves
exactly like a non-nested handshake, which is described in detail in Chapter 4.
From the outer partition’s perspective, we want an access to the inner partition to
look like a outer partition access, to minimize or eliminate change to the handshake
control. We are left to dissect the handshake for an access to the inner partition,
which looks like simultaneous handshakes on channels RC and IRC .

One important difference between the control and data components is that the

3 One could argue that wiring iwv across the array is unnecessary since the reset
guard, Wi, is already connected across the array, so responsibility for resetting wv↑ may
be shifted to the nested connect component, where iwv is locally available. Doing so
would add wire-delay on Wi, which slightly slows down the reset of wv↑ on every access
cycle through the outer partition.

119

Program 9.4 HSE: PCEVFB control component only of the data-independent read
port with nested data

*[[RC e
o]; renC↑;

[RCi ,inner −→ [IRC e
o]; irenC↑; [IRCi ∧ unlocked() −→ lock ; IRCo↑];

(IRC e
i ↓, ([Ro]; RC e

i ↓))
[]RCi ,outer −→ [unlocked() −→ lock ; RCo↑]; [Ro]; RC e

i ↓
];
(([¬RC e

o]; renC↓;
[RCi ,inner −→ [¬IRC e

o]; irenC↓; ((unlock ; IRCo↓), ([¬IRCi]; IRC e
i ↑))

[]RCi ,outer −→ unlock ; RCo↓
]),
([¬renD ∧ ¬renC ∧ ¬RCi]; RC e

i ↑)
)
]

nested control handshake is able to use two channel acknowledges, RC e
i and IRC e

i ,
on accesses to the inner partition. Using two acknowledges allows us to keep the
following ordering: renC↑ ≺ irenC↑ ≺ renC↓ ≺ irenC↓, which is proven in the tech-
nical report [11], whereas the data component had to interchange irenD ≺ renD↓.
Since the guards for control propagation are equivalent in the outer and inner
arrays, we can re-use the original unconditional control propagation elements in
both partitions of the nested design. As we described in Chapter 8, we connect the
root of the inner tree, IRC v

o , to an input of the outer tree to form an unbalanced
completion tree whose result is RC v

o . This simplifies the floor decomposition by
guaranteeing that RC v ⇒ IRC v and ¬RC v ⇒ ¬IRC v , which ultimately allows
us to re-use the original non-nested read handshake control in the outer parti-
tion of the nested design. Details of this argument can be found in the technical
report [11].

9.4.4 WAD Read Control Nesting

Introducing width adaptivity to the nested read port will require a slight modifica-
tion to the read handshake control and the control nested interconnect. However,
we are able to preserve the interface that accesses to the inner partition should
behave like accesses to the outer partition, but slower. In the case of control prop-
agation for a WAD, nested read port access, the action sequences should mirror
those of the non-WAD, nested read port, whose control propagation is uncondi-
tional. After we factor out the data component from the HSE Programs E.11, we
are left with Program 9.5 for the full-buffered reshuffling. Figures 9.9 and 9.10
outline the floor decompositions for the PCEVFB and PCEVHB reshufflings re-
spectively.

We observe that the guarded actions for skip in the terminations cases of
both the inner and outer control arrays are equivalent to that of the non-nested

120

HSE E.11 decomposition

HSE F.1
PRS H.10
Fig. 5.10

Fig. 4.11
PRS H.1
HSE 4.12

HSE F.17
PRS H.14
Fig. 9.21

Fig. 9.15
PRS H.3
HSE F.12HSE 4.12

PRS H.1
Fig. 4.11

HSE F.1
PRS H.10
Fig. 5.10

Fig. 4.14
PRS H.18
HSE 4.13

HSE F.18
PRS H.24
Fig. 9.18

Figure 9.9: Floor decomposition of a PCEVFB WAD nested read port

HSE E.12 decomposition

HSE F.1
PRS H.10
Fig. 5.10

Fig. 4.11
PRS H.1
HSE 4.12

HSE F.17
PRS H.14
Fig. 9.21

Fig. 9.15
PRS H.3
HSE F.12HSE 4.12

PRS H.1
Fig. 4.11

HSE F.1
PRS H.10
Fig. 5.10

Fig. 4.14
PRS H.18
HSE 4.13

HSE F.19
PRS H.25
Fig. 9.19

Figure 9.10: Floor decomposition of a PCEVHB WAD nested read port

counterpart, therefore we can re-use the non-nested WAD control propagation
array in both partitions. The width-adaptive version of the read control nested
interconnect is given in Program F.17. We introduce signals RC f

o and IRC f
o to

represent the control termination cases. We guard RC f
o with IRC f

o , which makes
terminating accesses to the inner partition appear like a terminating access to
the outer partition. Since the interconnect controls a handshake on IRC , adding
width adaptivity to the nested interconnect is analogous to making the original
non-nested read handshake control width-adaptive in Chapter 5.

Finally, only the outer partition’s handshake control component remains. Since
the use of RC f

o is now shared, we must guarantee exclusive use between the two
partitions, just as we did for the R in the data component. The only modification
that is required is a check for ¬IRC f

o before renC↑, analogous to checking ¬IRv
o

before renD in the data component. The final HSE for the WAD, nested variation of

121

Program 9.5 HSE: PCEVFB control component of WAD read port with nested data

*[[RC e
o]; renC↑;

[RCi ,inner −→ [IRC e
o]; irenC↑; [IRCi];

[p(reg) ∧ unlocked() −→ lock ; IRCo↑[]t(reg) −→ skip];
(IRC e

i ↓, ([Ro]; RC e
i ↓))

[]RCi ,outer −→ [p(reg) ∧ unlocked() −→ lock ; RCo↑[]t(reg) −→ skip];
[Ro]; RC e

i ↓
];
(([(p(reg) ∧ ¬RC e

o) ∨ t(reg)]; renC↓;
[RCi ,inner −→ [(p(reg) ∧ ¬IRC e

o) ∨ t(reg)]; irenC↓;
((unlock ; IRCo↓), ([¬IRCi]; IRC e

i ↑))
[]RCi ,outer −→ unlock ; RCo↓
]),

([¬renD ∧ ¬renC ∧ ¬RCi]; RC e
i ↑))

]

the read handshake control is given in Program F.18 for the full-buffer reshuffling.
The final wait on ¬IRC f

o ∧¬IRC v
o in Program F.17 becomes unnecessary because

¬IRC v
o is checked by RC v

o ↓ ≺ RC e
o ↑ ≺ renC↑, and ¬IRC f

o is now explicitly checked
by renC in the outer partition’s read handshake control. A detailed discussion of
the various synchronization actions is given in technical report [11].

9.4.5 Non-WAD Write Control Nesting

The control component of the non-WAD nested write port is given in the upper
half of HSE Program E.9 for the full-buffered version. It is worth pointing out that
the control HSE closely resembles that of the full-buffered non-WAD nested read
control component, shown in Program 9.4. If we factor out the respective guards
of wvc and Ro , which only apply to outer partition accesses, we find that their
remainders are in fact equivalent. Since the only differences arise in events that
are in the handshake control of the outer partition, we can use the exact same floor
decomposition for the control propagation array and the control nested connect.
The same decomposition preserves the interface that writes to the inner partition
appears like outer partition writes to the handshake control. Program F.16 shows
the partial HSE for the control nested interconnect between the write control
propagation arrays of the inner and outer partitions.

The write control propagation arrays are the same as those for non-nested
write control propagation. We use the same technique of connecting the inner
partition completion signal IWC v

o as an input to the completion tree of the outer
partition, so that WC v

o ⇒ IWC v
o and ¬WC v

o ⇒ ¬IWC v
o . Since the outer parti-

tion’s handshake control cannot distinguish between inner and outer write control
propagation, and the control decomposition already guarantees correct ordering,
we can use the original non-nested write handshake controls, HSE Programs 4.25

122

(full-buffer) and 4.26 (half-buffer), for the nested write port’s handshake control.

9.4.6 WAD Write Control Nesting

Unconditional Outer Write-Enable

HSE E.13 decomposition

HSE F.7
PRS H.8
Fig. 4.13

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.21
PRS H.16
Fig. 9.23

Fig. 9.16
PRS H.4
HSE F.14

PRS H.5

HSE 4.24
PRS H.1
Fig. 4.11

HSE F.4
PRS H.11
Fig. 5.11

Fig. 4.14
PRS H.18
HSE 4.23

HSE F.5
PRS H.29
Fig. 5.14

Figure 9.11: Floor decomposition of a PCEVFB WAD nested write port, (unconditional
outer write-enable)

HSE E.14 decomposition

HSE F.7
PRS H.8
Fig. 4.13

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.21
PRS H.16
Fig. 9.23

Fig. 9.16
PRS H.4
HSE F.14

PRS H.5

HSE 4.24
PRS H.1
Fig. 4.11

HSE F.4
PRS H.11
Fig. 5.11

Fig. 4.14
PRS H.18
HSE 4.23

HSE F.6
PRS H.30
Fig. 5.15

Figure 9.12: Floor decomposition of a PCEVHB WAD nested write port, (conditional
outer write-enable)

We left off in Section 9.3.4 with the HSEs for WAD nested write ports shown
in Program E.13 full-buffered with an unconditional outer write-enable, and Pro-
gram E.15 full-buffered with a conditional outer write-enable. In both cases, we
have chosen to only raise the inner write-enable in the control propagation case,

123

and the handshake on IWC is full-buffered. Figures 9.11 and 9.12 show the out-
line of the floor decompositions for the PCEVFB and PCEVHB reshufflings of the
WAD write port with unconditional outer write-enable.

In the case with unconditional outer write-enable and conditional inner write
enable, the guards for control propagation differ between the inner and outer par-
tition: IWCo↑ is not guarded by dIW 0 because iwen already implies propagation,
whereas WCo↑ is guarded by dW 0 because wen does not imply control propaga-
tion. Thus, the HSE of the inner partition control propagation array is equivalent
to that of the base design’s with unconditional propagation, and the HSE of the
outer partition control propagation array is equivalent to the WAD non-nested
array with unconditional write-enable.

Since the nested interconnect performs the functions of a handshake control
with respect to the inner partition, we can modify the existing handshake control
HSE for conditional write-enableto obtain Program F.21. Using dIW 1 as a guard
in the write control nested interconnect requires that ¬IWC e

i is checked before
dIW 1↓ is reset in the write data nested interconnect. The HSE for the modified
data interconnect is shown in Program F.20.

As usual, This guarantees that IWC v ≺WC v on writes to the inner partition.
Since we have introduced no shared control variables between partitions, we have
preserved the interface of making write access to the inner partition indistinguish-
able from writes to the outer partition from the perspective of the outer handshake
control. Thus, we can re-use the WAD non-nested write handshake control for the
outer partition of the nested design.

Conditional Outer Write-Enable

HSE E.15 decomposition

HSE F.7
PRS H.8
Fig. 4.13

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.22
PRS H.15
Fig. 9.24

Fig. 9.16
PRS H.4
HSE F.14

PRS H.5

HSE 4.24
PRS H.1
Fig. 4.11

HSE F.7
PRS H.8
Fig. 4.13

Fig. 4.14
PRS H.18
HSE 4.23

HSE F.8
PRS H.31
Fig. 5.16

Figure 9.13: Floor decomposition of a PCEVFB WAD nested write port, (conditional
outer write-enable)

124

HSE E.16 decomposition

HSE F.7
PRS H.8
Fig. 4.13

Fig. 4.11
PRS H.1
HSE 4.24

HSE F.22
PRS H.15
Fig. 9.24

Fig. 9.16
PRS H.4
HSE F.14

PRS H.5

HSE 4.24
PRS H.1
Fig. 4.11

HSE F.7
PRS H.8
Fig. 4.13

Fig. 4.14
PRS H.18
HSE 4.23

HSE F.9
PRS H.32
Fig. 5.17

Figure 9.14: Floor decomposition of a PCEVHB WAD nested write port, (conditional
outer write-enable)

Figures 9.13 and 9.14 outline the floor decompositions for the PCEVFB and
PCEVHB reshufflings of the WAD write port with conditional outer write-enable.
We have already argued that the inner control propagation array is equivalent to
the write control array for the conditional write-enablevariation. Since the control
nested interconnect performs the functions of the inner handshake control, we can
adapt HSE of the WAD write handshake control for conditional write-enable to
interface with the outer partition’s handshake control. The resulting HSE for the
control nested interconnect is Program F.22. Having preserved the interface of
keeping write accesses to either partition indistinguishable, we can re-use the the
WAD non-nested handshake control (without modification) as the outer partition’s
handshake control of the nested design.

9.5 Production Rules

The floor decomposition of the nested read and write ports revealed that the
majority of partial HSE components required little or no change from the non-
nested versions. To recapitulate the similarities, the following components are
exactly the same as those of the non-nested designs from Chapters 4 and 5:

• read- and write-ported register cells that store internal state

• unconditional read and write control propagation array elements

• WAD read and write control propagation array elements

• handshake controls for unconditional read control propagation

• handshake controls for unconditional write control propagation

125

• handshake controls for WAD write control propagation
(both conditional and unconditional outer write-enable)

In this section, we synthesize the new and modified HSEs into circuit production
rules.

9.5.1 Read Data Nested Interconnect

In Section 9.4.1, we introduced the nested interconnect cell between the read ports
of the inner and outer register arrays, whose partial HSE is listed in Program F.12.
This HSE already exposes partial implementation in CMOS production rules by
using IR and IR to represent the internal inner data channel. We translated
RCi ,inner as the inner input control validity IRC v

i . To guarantee that irenD↓ oc-
curs before R↓, we introduce its complement iren D , which guards R↓. iren D

guarantees that IRv↓ has cut-off renC↑ in the outer partition. Because we make no
timing assumptions about iren D↓, we have to check every transition, so the most
convenient place to check ¬iren D is before IR↑. We have guaranteed stability by
making iren D↑ the last possible transition in the interconnect cell before respond-
ing the the outer partition with R↓. When the outer partition resets renD↓, IR↑
is allowed to reset, which leads to IRv↑, the final transition in the reset phase,
which unlocks renC↑ in the outer partition. The circuit for the nested interconnect
is shown in Figure 9.15, and the PRS are also listed in Program H.3.

Fig. 9.2

IR1

irenD

renDiren D

IR0

iren D

renD
IRv

R0

R1

IRCv

irenD

IR0

IR1

Figure 9.15: The interconnect circuit between inner and outer register partitions for a
single nested read port

It is unfortunate that the data latency for a read access to the inner partition is
up to nine transitions slower than a read accesses to the outer partition, a seemingly
high penalty, but this is the price we must pay for QDI robustness. Remember

126

that the idea behind nesting is that the most frequent accesses hit in the faster
outer partition while less frequent accesses go through the slower inner partition.
In the HSE floor decomposition, we have given some hints about where timing
assumptions would be relatively safe and beneficial, should the need for a faster
inner partition arise. The more ambitious (and hence, less conservative) designer
is invited to explore the use of timing assumptions to make the inner partition
read accesses faster while maintaining a high degree of robustness.

9.5.2 Write Data Nested Interconnect

We presented the nested interconnect cell between the write ports of the inner and
outer register arrays in Section 9.4.2. The partial HSE is listed in Program F.14.
We introduce the inverted dual-rail IW and the active-high validity iwv to synthe-
size CMOS production rules. We allow IW ↑ to reset as soon as the outer partition
sees validity wv↓, which allows the inner partition to reset concurrently with the
outer partition’s handshake. Eventually the outer partition’s data interface checks
that the inner partition has reset iwv↓ before requesting the next input. The rest
of the production rules are straightforward from the HSE. The circuit is shown in
Figure 9.16, and the PRS are listed in Program H.4.

Fig. 9.2

IW 1

IW 0
wv

W 1
W 0

wv
iwv

IWCv

IW 0

iwv

IW 1

Figure 9.16: The interconnect circuit between inner and outer register partitions for a
single nested write port

The time between W ↑ and wv↓ on a bit-flipping write to the outer partition
is roughly 3 transitions. The same delay for a bit-flipping write to the inner
partition is roughly seven transitions, which is a less drastic than the difference in
read latency between partitions. We will show in Section 9.6 how this impacts the
cycle times.

127

In Section 9.4.6, we showed that the inner partition’s delimiter bit of the write
port dIW is shared to the width-adaptive control’s nested interconnect, and there-
fore needed to wait for the inner acknowledge IWC e

i ↓ before resetting dIW ↓, as
specified in HSE Program F.20. This translates to a simple modification in the
PRS, shown in Program H.6. Then in Section 9.4.6, we only needed to share one
rail of the delimiter bit dIW 1, which translates to another slight modification in
the PRS, shown in Program H.5.

9.5.3 Read/Write Nested Data Interface

We showed in Sections 9.4.1 and 9.4.2 that the data interface for the outer partition
needed slight modification to accommodate nested read and write accesses in HSE
Programs F.10 and F.11. For synthesis into CMOS production rules, we replace
the ¬IRv

o guard with the signal IRv
o , and the iwv guard with ¬iwv . The resulting

circuit is shown in Figure 9.17 and the PRS are listed in Program H.19.

 Fig. 9.2 W 0

W 1

wv

iwv

wv

Re

renD

renD

RCe
i

IRv

renD

rv

R1

R0

renD

R1

R0

Figure 9.17: The data interface cell adapted to accommodate nested read and write
register arrays, shown for a single port. Shaded transistors are modifications introduced
by nesting.

128

9.5.4 WAD Nested Read Handshake Control

In Section 9.4.4, we concluded that the only modification required to convert a
non-nested WAD read handshake control to the nested version is to strength the
guard of renC↑ with ¬IRC f

o . This translates into adding a single series NFET in
the production rule for renC↓ whose guard is ircof from the inner partition. The
resulting WAD nested read handshake controls for the PCEVFB and PCEVHB
reshufflings are shown respectively in Figures 9.18 and 9.19. Their PRSs are listed
as Programs H.24 and H.24.

−

Fig. 9.2

RCfo

RCeo

renv

RCvi

Rv

RCvo

RCvi

renv

ircof

renC

RCfo

renC

RCei

RCfo

aC

Figure 9.18: PCEVFB WAD nested read handshake control circuit. The shaded circuit
is a modification introduced by WAD nesting.

9.5.5 Unconditional Read Control Nested Interconnect

In Section 9.4.3, we derived the partial HSE for the control interconnect component
between the control propagation arrays of the inner and outer partitions for a
non-WAD read port in Program F.15. Synthesis into CMOS production rules is
straightforward after we introduce the intermediate signal irenC . The inverter
irenC is good for strongly driving irenC , which is shared across the inner read

control propagation array. The circuit is shown in Figure 9.20 and the PRS is
listed in Program H.12.

9.5.6 WAD Read Control Nested Interconnect

In Section 9.4.4, we derived the partial HSE for the control interconnect component
between the control propagation arrays of the inner and outer partitions for a WAD

129

−

Fig. 9.2

renv

RCvi

Rv

RCvo

RCvo

RCvi

renv
RCeo

RCfo

ircof

renC

RCfo

renC

RCei

RCfo

aC

Figure 9.19: PCEVHB WAD nested read handshake control circuit. The shaded circuit
is a modification introduced by WAD nesting.

Fig. 9.2

irenC

IRCv
i

IRCv
o

irenC

IRCe
o

IRCe
i

irenC renC

renC IRCv
i

Figure 9.20: The control interconnect circuit between the inner and outer partitions’
control propagation arrays for a non-WAD nested read port

read port in Program F.17. We need to introduce a few complementary signals to
implement CMOS production rules. The circuit is shown in Figure 9.21 and the
PRS is listed in Program H.14.

130

Fig. 9.2

IRCei

renC

renC

IRCvi

IRCeo

IRCfo

RCfo

renC

irenC

ircof

irenC

IRCvo

IRCvi

irenC

irenC

ircof

irenC
IRCfo

Figure 9.21: The control interconnect circuit between the inner and outer partitions’
control propagation arrays for a WAD nested read port. Shaded circuits are modifications
introduced by WAD.

ircof is in inverted copy of IRC f
o and is connected to the outer partition’s

handshake control to unlock renC↑. We use ircof to bypass waiting for the inner
partition’s output acknowledge IRC e

o before irenC↑. On a control terminating
access to the inner partition, irenC guarantees to the outer partition that ¬ircof
is stable before responding with RC f

o ↓. A control propagating access to the in-
ner partition behaves exactly like the non-WAD version of the control’s nested
interconnect in the previous subsection.

9.5.7 Unconditional Write Control Nested Interconnect

In Section 9.4.5, we observed that the HSE for the control interconnect between
the inner and outer write control propagation array of the non-WAD write port
was identical to that of the non-WAD read port. Therefore, their circuits should
also be identical. We show the write control interconnect in Figure 9.22, and give
the PRS in Program H.13.

9.5.8 WAD Write Control Nested Interconnect

Unconditional Outer Write-Enable

We left off in Section 9.4.6 with the partial HSE for the control interconnect com-
ponent for the WAD nested write port with an unconditional outer write-enable,

131

Fig. 9.2

iwen

IWCv
i

IWCv
o

iwen

IWCe
i

IWCe
o

iweniwen

wen IWCv
i

Figure 9.22: The control interconnect circuit between inner and outer partitions’ control
propagation arrays for a non-WAD nested write port

shown in Program F.21. Since the HSE was only a slight modification from the
non-nested WAD write handshake control with conditional write-enable, we expect
the production rules to look similar. As a result, the circuit synthesis is only a
slight modification. The circuit is shown in Figure 9.23, and the PRS is listed in
Program H.16.

Conditional Outer Write-Enable

In Section 9.4.6, we showed the partial HSE for the control interconnect com-
ponent for the WAD nested write port with a conditional outer write-enable in
Program F.22. Again, the HSE was only a slight modification from the non-nested
WAD write handshake control with conditional write-enable. Therefore, the cir-
cuit synthesis is only a slight modification. The circuit is shown in Figure 9.24,
and the PRS is listed in Program H.15.

9.6 Results

We have simulated all previous designs of the register core read and write ports,
but with nested partitioning. We include results for the unbanked, nested core with
16 registers in the inner and outer partitions, and results for the banked, nested
core with 8 registers in both partitions. In the tables in Appendix J, we refer to the
former core as 32n (32-nested), and the latter as 16n (16-nested). Since register core
banking and nesting are independent transformations, they can easily be combined
to create really fast access and low energy registers. Figure 9.25 illustrates how

132

Fig. 9.2

iwen

IWCeo

IWCei

dIW 1

dW 0wen

iwen

iwen

IWCvo

dIW 1

IWCvi

iwen

Figure 9.23: The control interconnect circuit between the inner and outer partitions’
control propagation arrays for a WAD nested write port with an unconditional outer
write-enable. The shaded circuits are modifications introduced by WAD.

Fig. 9.2

iwen

IWCeo

IWCei

wen
IWCvi

iwen

dIW 1

dIW 1

IWCvi

iwen

IWCvo

iwen

Figure 9.24: The control interconnect circuit between the inner and outer partitions’
control propagation arrays for a WAD nested write port with a conditional outer write-
enable. The shaded circuits are modifications introduced by WAD.

vertically pipelined, banked and nested read and write ports operate.
With nesting, we observe a greater difference in performance and energy be-

tween the partitions than we saw with just unbalancing completion trees. In each

133

(a)
[t

o
re

ad
 b

yp
as

s]
(b)

[f
ro

m
 w

ri
te

 b
yp

as
s]

Figure 9.25: Vertically pipelined, banked and nested read and write ports.

subsection, we compute breakeven probabilities for when the average-case nested
accesses is superior to uniform accesses. These probabilities are more significant
than the corresponding probabilities from Chapter 8 because there is a greater
gain in the fast case, and a higher penalty for the slow case. Bear in mind (from
Section 8.1) that the most frequently used 16 out of 32 MIPS registers constituted
around 99% of all dynamic read and write register accesses. We show that in all
cases of reading and writing, the breakeven probabilities of our nested designs fall
below this critical probability, which makes a case for nesting the asynchronous
register files that we target.

We also evaluate the impact of adding an inner partition (of 16 registers) to
an existing bank of 16 registers. (In Appendix J, this corresponds to comparing
w=16 against w=32n.) Nesting has a nice property that the number of registers in a
deeper partition has no impact on the performance and dynamic energy because the
nested interconnect isolates load from the outer partition. Thus, the only negative
impact on performance and energy from adding a partition is the constant cost of
the nested interconnect. The number of registers in each partition will, however,
affect the amount of static power dissipated, which is included in all of the reported
energy figures. The numbers presented in these sections are collected in Table J.10
for reading and in Table J.21 for writing.

9.6.1 Area

The layout dimensions for the various components corresponding to Figure 9.2 are
listed in Table 4.1. The width of the nested interconnect cell is 3.69 times the
width of a register cell. This is the the only transistor area overhead associated
with nesting. (The IRv and IW v wires run over the outer cell array.) If one were
to recursively nest multiple levels of register banks, each nesting boundary would
incur this constant overhead in area.

134

9.6.2 Non-WAD Reading

Table 9.1 shows the performance and energy results for the half-buffer and full-
buffer reshufflings of the core read port with a total of 32 registers, and Table 9.2
shows the same results for read ports with a total of 16 registers. The same results
appear in Table J.2 in row entries with widths 32n and 16n, respectively. The
relative performance and energy comparisons with the uniform-access read ports
are computed in Table J.11, along with their breakeven probabilities. The baselines
for comparison are non-nested core ports with the same number of total registers.

32-nested, half-buffer. The fast (outer) partition’s read cycle time is 1.090 of
the baseline uniform-access cycle time, and the slow (inner) partition’s cycle time
is 2.175 of the uniform-access cycle time. The fast cycle time comes as a surprise,
because the fast partition is essentially half of the size of the non-nested design
with single transistor modifications and a completion tree with less path effort.
The reason for the extremely high penalty for slow accesses is because nearly an
entire data handshake completes in the inner partition before the outer partition
proceeds, which is a consequence of keeping the system strictly QDI. To reduce
the penalty, one could make careful timing assumptions in the nested interconnect
to avoid time-critical event-orderings, at the sacrifice of the robustness of delay
insensitivity. The fast partition’s read latency is 0.668 of the uniform-access read
latency, while the slow read latency is 4.043 of the uniform-access read latency. For
the average nested read latency to beat the uniform-access read latency, at least
90.2% of accesses must hit in the fast partition. Recall from Section 9.4.1 that
the high penalty in latency is due to the fact that the inner bank must complete
most of its cycle before it can reply with the data to the outer partition. The fast
partition’s cycle energy is 0.775 of the baseline uniform-access cycle energy, and
the slow partition’s energy is 1.394 of the uniform-access cycle energy. For the
average nested cycle energy to beat the uniform-access cycle energy, at least 63.7%
of accesses must hit in the fast partition.

32-nested, full-buffer. The fast partition’s read cycle time is 1.009 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 2.106 of
the uniform-access cycle time. Again, the fast partition cycle time is surprisingly
slower than that of the non-nested cycle time. The fast partition’s cycle energy is
0.746 of the baseline uniform-access cycle energy, and the slow partition’s energy
is 1.350 of the uniform-access cycle energy. For the average nested cycle energy
to beat the uniform-access cycle energy, at least 58.0% of accesses must hit in the
fast partition.

16-nested, half-buffer. The fast partition’s read cycle time is 0.966 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 2.040
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 96.8% of accesses must hit in the fast partition. The
fast partition’s read latency is 0.733 of the uniform-access read latency, while the
slow read latency is 5.180 of the uniform-access read latency. For the average

135

Table 9.1: Read-access performance and energy comparisons for the nested register file
with 16 registers per partition. Upper numbers are figures for the faster outer partition.

trans./ cycle freq. latency energy/cycle Eτ 2

buf
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

22 2.128 470.0 0.216 20.86 94.4
half

46 4.247 235.4 1.308 37.51 676.6
20 1.880 531.9 0.216 19.84 70.1

full
38 3.922 255.0 1.308 35.90 552.3

Table 9.2: Read-access performance and energy comparisons for the nested register file
with 8 registers per partition. Upper numbers are figures for the faster outer partition.

trans./ cycle freq. latency energy/cycle Eτ 2

buf
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

18 1.759 568.5 0.163 14.47 44.8
half

38 3.714 269.2 1.149 24.98 344.6
16 1.630 613.5 0.163 14.09 37.4

full
32 3.103 322.3 1.149 23.25 223.9

nested read latency to beat the uniform-access read latency, at least 94.0% of
accesses must hit in the fast partition. The fast partition’s cycle energy is 0.909 of
the baseline uniform-access cycle energy, and the slow partition’s energy is 1.569
of the uniform-access cycle energy. For the average nested cycle energy to beat
the uniform-access cycle energy, at least 86.2% of accesses must hit in the fast
partition.

16-nested, full-buffer. The fast partition’s read cycle time is 0.960 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.827
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 95.3% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.893 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.474 of the uniform-access cycle energy. For
the average nested cycle energy to beat the uniform-access cycle energy, at least
81.6% of accesses must hit in the fast partition.

Impact of adding a nested partition. Recall that the impact of nesting on
bit line latency comes from the additional parasitic load of the nested interconnect
on each read bit line R. For reading, we measured an increase in read latency of a
bit line by −2.6%, or a decrease of 6 ps. This decrease in read latency is purely an
artifact of measuring signal delay as the time difference between the last of multiple
arriving inputs to the output transition, which does not model the Charlie Effect
of transistors [54]. This difference is small enough to be considered noise in the

136

data. The insignificant change in read latencies is very promising to asynchronous
designs whose performance can be limited by the total forward latency through
the datapath as opposed to the cycle time of local handshakes.

For the half-buffer reshuffling, adding an inner partition results in a 16.8%
increase in cycle time and a 31.0% increase in energy per block per iteration. For
the full-buffer reshuffling, adding an inner partition results in a 10.7% increase in
cycle time and a 25.8% increase in energy per block per iteration.

9.6.3 Non-WAD Writing

Table 9.3 shows the performance and energy results for the half-buffer and full-
buffer reshufflings of the core write port with a total of 32 registers, and Table 9.4
shows the same results for write ports with a total of 16 registers. The same
results appear in Table J.12 in row entries with widths 32n and 16n, respectively.
The relative performance and energy comparisons with the uniform-access write
ports are computed in Table J.22, along with their breakeven probabilities. The
baselines for comparison are non-nested core ports with the same number of total
registers.

32-nested, half-buffer. The fast partition’s write cycle time is 0.942 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.592
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 91.1% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.587 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.074 of the uniform-access cycle energy. The
fast partition’s write latency is 0.818 of the uniform-access write latency, while the
slow write latency is 2.074 of the uniform-access write latency. For the average
nested write latency to beat the uniform-access write latency, at least 85.5% of
accesses must hit in the fast partition. For the average nested cycle energy to beat
the uniform-access cycle energy, at least 15.2% of accesses must hit in the fast
partition. The significant energy reduction in the outer partition shows that the
energy of the data access dominated that of control propagation. If one can tolerate
slow cycles, then much energy is reduced by simply isolating the capacitance of
the inner partition with the nested interconnect.

32-nested, full-buffer. The fast partition’s write cycle time is 0.938 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.492
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 88.9% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.583 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.042 of the uniform-access cycle energy. For the
average nested cycle energy to beat the uniform-access cycle energy, at least 9.2%
of accesses must hit in the fast partition.

16-nested, half-buffer. The fast partition’s write cycle time is 0.980 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.644

137

Table 9.3: Write-access performance and energy comparisons for the nested register file
with 16 registers per partition. Upper numbers are figures for the faster outer partition.

trans./ cycle freq. latency energy/cycle Eτ 2

buf
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

22 2.344 426.7 0.432 16.32 89.7
half

46 3.960 252.5 1.095 29.86 468.3
20 2.293 436.1 0.432 16.01 84.2

full
38 3.647 274.2 1.095 28.60 380.3

Table 9.4: Write-access performance and energy comparisons for the nested register
file with 8 registers per partition. Upper numbers are the figures for the faster outer
partition.

trans./ cycle freq. latency energy/cycle Eτ 2

buf
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

20 2.136 468.1 0.375 10.71 48.9
half

36 3.583 279.1 0.963 19.48 250.0
20 2.079 481.0 0.375 10.49 45.3

full
30 2.964 337.4 0.963 17.68 155.3

of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 97.0% of accesses must hit in the fast partition. The
fast partition’s write latency is 0.899 of the uniform-access write latency, while the
slow write latency is 2.310 of the uniform-access write latency. For the average
nested write latency to beat the uniform-access write latency, at least 92.8% of
accesses must hit in the fast partition. The fast partition’s cycle energy is 0.953 of
the baseline uniform-access cycle energy, and the slow partition’s energy is 1.734
of the uniform-access cycle energy. For the average nested cycle energy to beat
the uniform-access cycle energy, at least 94.0% of accesses must hit in the fast
partition.

16-nested, full-buffer. The fast partition’s write cycle time is 0.981 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.399
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 95.6% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.928 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.565 of the uniform-access cycle energy. For
the average nested cycle energy to beat the uniform-access cycle energy, at least
88.7% of accesses must hit in the fast partition.

Impact of adding a nested partition. Recall that the impact of nesting on
bit line latency comes from the additional gate load of the nested interconnect on

138

each write bit line W . For writing, we measured an increase in write latency of a
bit line by 3.6%, or 15 ps, which is a very low overhead for nesting.

For the half-buffer reshuffling, adding an inner partition results in a 7.5% in-
crease in cycle time and a 45.3% increase in energy per block per iteration. For
the full-buffer reshuffling, adding an inner partition results in a 8.3% increase in
cycle time and a 41.7% increase in energy per block per iteration.

9.6.4 WAD Reading

Table 9.5 shows the performance and energy results for the half-buffer and full-
buffer reshufflings of the WAD core read port with a total of 32 registers, and
Table 9.6 shows the same results for WAD read ports with a total of 16 regis-
ters. The same results appear in Table J.3. The relative performance and energy
comparisons with the uniform-access read ports are computed in Table J.11, along
with their breakeven probabilities.

32-nested, half-buffer. The fast partition’s read cycle time is 1.087 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 2.168 of
the uniform-access cycle time. The read latencies for the WAD read port are the
same as those for the non-WAD read port. The fast partition’s cycle energy is
0.767 of the baseline uniform-access cycle energy, and the slow partition’s energy
is 1.375 of the uniform-access cycle energy. For the average nested cycle energy
to beat the uniform-access cycle energy, at least 61.7% of accesses must hit in the
fast partition.

32-nested, full-buffer. The fast partition’s read cycle time is 1.011 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 2.042 of
the uniform-access cycle time. The fast partition’s cycle energy is 0.749 of the
baseline uniform-access cycle energy, and the slow partition’s energy is 1.338 of
the uniform-access cycle energy. For the average nested cycle energy to beat the
uniform-access cycle energy, at least 57.5% of accesses must hit in the fast partition.

Table 9.5: Read-access performance and energy comparisons for the WAD nested reg-
ister file with 16 registers per partition. Upper numbers are figures for the faster outer
partition.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

22 2.335 428.3 26.17 142.7
half

46 4.659 214.6 46.89 1017.9
20 2.037 490.9 24.87 103.2

full
38 4.114 243.1 44.40 751.6

139

Table 9.6: Read-access performance and energy comparisons for the WAD nested reg-
ister file with 8 registers per partition. Upper numbers are figures for the faster outer
partition.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

18 1.964 509.3 18.04 69.5
half

38 4.081 245.1 31.22 519.9
16 1.802 554.8 17.66 57.4

full
32 3.498 285.9 29.52 361.2

16-nested, half-buffer. The fast partition’s read cycle time is 0.970 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 2.015
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 97.1% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.907 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.570 of the uniform-access cycle energy. For
the average nested cycle energy to beat the uniform-access cycle energy, at least
86.0% of accesses must hit in the fast partition.

16-nested, full-buffer. The fast partition’s read cycle time is 0.963 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.869
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 95.9% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.900 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.505 of the uniform-access cycle energy. For
the average nested cycle energy to beat the uniform-access cycle energy, at least
83.5% of accesses must hit in the fast partition.

Impact of adding a nested partition. The impact of adding an inner par-
tition of 16 register on the read latency is the same as that for the non-WAD read
ports, in Section 9.6.2. For the half-buffer reshuffling, adding an inner partition
results in a 15.3% increase in cycle time and a 31.6% increase in energy per block
per iteration. For the full-buffer reshuffling, adding an inner partition results in a
8.8% increase in cycle time and a 26.8% increase in energy per block per iteration.

These results show that nesting partitions has roughly the same impact on
performance and energy for width-adaptive read ports as it does on non-WAD
read ports. The relative impacts of nesting on performance and energy between
the half-buffer and full-buffer variations are similar. The absolute energy figures
show that nesting combined with width adaptivity can potentially reduce read port
energy by 2/3 if the majority of accesses hit in the fast partition.

140

9.6.5 WAD Writing, Unconditional Outer Write-Enable

Table 9.7 shows the performance and energy results for the half-buffer and full-
buffer reshufflings of the WAD write port (unconditional outer write-enable) with
a total of 32 registers, and Table 9.8 shows the same results for WAD write ports
with a total of 16 registers. The same results appear in Table J.13. The rela-
tive performance and energy comparisons with the uniform-access read ports are
computed in Table J.22, along with their breakeven probabilities.

32-nested, half-buffer. The fast partition’s write cycle time is 0.943 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.583
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 91.1% of accesses must hit in the fast partition. The
write latencies for the WAD write port are the same as those for the non-WAD
write port. The fast partition’s cycle energy is 0.552 of the baseline uniform-access
cycle energy, and the slow partition’s energy is 1.027 of the uniform-access cycle
energy. It is interesting to note that a slow access actually consumes less energy
than a uniform access (of equal size). One possible reason is because the cell array
is partitioned, the substrate leakage current in each partition is halved, thereby
making each partition easier to staticize and keep signals away from the threshold
voltage of the gates connected to the bit lines, which in turn, reduces the sub-
threshold leakage of the affected nodes — leakage in divided cell arrays is easier
to conquer.

32-nested, full-buffer. The fast partition’s write cycle time is 0.943 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.459
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 88.9% of accesses must hit in the fast partition. The fast
partition’s cycle energy is 0.557 of the baseline uniform-access cycle energy, and the
slow partition’s energy is 0.977 of the uniform-access cycle energy. Again, we see
that the energy of an inner partition access can be lower that of the unpartitioned
access.

Table 9.7: Write-access performance and energy comparisons for the WAD nested regis-
ter file with 16 registers per partition, unconditional outer write-enable variation. Upper
numbers are figures for the faster outer partition.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

22 2.453 407.6 19.35 116.5
half

46 4.117 242.9 36.04 610.8
20 2.456 407.2 19.45 117.3

full
38 3.801 263.1 34.11 492.7

141

Table 9.8: Write-access performance and energy comparisons for the WAD nested regis-
ter file with 8 registers per partition, unconditional outer write-enable variation. Upper
numbers are figures for the faster outer partition.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

20 2.245 445.4 12.60 63.5
half

36 3.740 267.4 22.82 319.2
20 2.238 446.9 12.54 62.8

full
30 3.211 311.5 21.18 218.3

16-nested, half-buffer. The fast partition’s write cycle time is 0.981 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.634
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 97.1% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.957 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.733 of the uniform-access cycle energy. For
the average nested cycle energy to beat the uniform-access cycle energy, at least
94.5% of accesses must hit in the fast partition.

16-nested, full-buffer. The fast partition’s write cycle time is 0.981 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.408
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 95.6% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.932 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.574 of the uniform-access cycle energy. For
the average nested cycle energy to beat the uniform-access cycle energy, at least
89.4% of accesses must hit in the fast partition.

Impact of adding a nested partition. The impact of adding an inner parti-
tion of 16 register on the write latency is the same as that for the non-WAD write
ports, in Section 9.6.3. For the half-buffer reshuffling, adding an inner partition
results in a 7.2% increase in cycle time and a 47.0% increase in energy per block
per iteration. For the full-buffer reshuffling, adding an inner partition results in a
7.7% increase in cycle time and a 44.6% increase in energy per block per iteration.

9.6.6 WAD Writing, Conditional Outer Write-Enable

Table 9.9 shows the performance and energy results for the half-buffer and full-
buffer reshufflings of the WAD write port (unconditional outer write-enable) with
a total of 32 registers, and Table 9.10 shows the same results for WAD write
ports with a total of 16 registers. The same results appear in Table J.14. The
relative performance and energy comparisons with the uniform-access read ports
are computed in Table J.22, along with their breakeven probabilities.

142

32-nested, half-buffer. The fast partition’s write cycle time is 0.940 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.585
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 90.7% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.554 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.032 of the uniform-access cycle energy. For the
average nested cycle energy to beat the uniform-access cycle energy, at least 6.7%
of accesses must hit in the fast partition, which is a sure win in energy, even if the
partition accesses are evenly distributed.

32-nested, full-buffer. The fast partition’s write cycle time is 0.943 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.453
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 88.9% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.539 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 0.950 of the uniform-access cycle energy, thus all
accesses will benefit in decreased energy compared to the non-nested write port.

Table 9.9: Write-access performance and energy comparisons for the WAD nested reg-
ister file with 16 registers per partition, conditional outer write-enable variation. Upper
numbers are figures for the faster outer partition.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

24 2.403 416.2 19.06 110.0
half

46 4.052 246.8 35.50 582.8
22 2.486 402.2 19.43 120.1

full
38 3.831 261.0 34.25 502.6

Table 9.10: Write-access performance and energy comparisons for the nested register file
with 8 registers per partition, conditional outer write-enable variation. Upper numbers
are figures for the faster outer partition.

trans./ cycle freq. energy/cycle Eτ 2

buf
cycle (ns) (MHz) (pJ) (10−30Js2)

22 2.197 455.2 12.41 59.9
half

36 3.656 273.5 22.67 303.0
20 2.268 440.9 12.60 64.8

full
30 3.203 312.2 21.20 217.5

16-nested, half-buffer. The fast partition’s write cycle time is 0.980 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.630

143

of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 96.9% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.953 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.739 of the uniform-access cycle energy. For
the average nested cycle energy to beat the uniform-access cycle energy, at least
94.0% of accesses must hit in the fast partition.

16-nested, full-buffer. The fast partition’s write cycle time is 0.978 of the
baseline uniform-access cycle time, and the slow partition’s cycle time is 1.381
of the uniform-access cycle time. For the average nested cycle time to beat the
uniform-access cycle time, 94.5% of accesses must hit in the fast partition. The
fast partition’s cycle energy is 0.933 of the baseline uniform-access cycle energy,
and the slow partition’s energy is 1.569 of the uniform-access cycle energy. For
the average nested cycle energy to beat the uniform-access cycle energy, at least
89.4% of accesses must hit in the fast partition.

Impact of adding a nested partition. The impact of adding an inner parti-
tion of 16 register on the write latency is the same as that for the non-WAD write
ports, in Section 9.6.3. For the half-buffer reshuffling, adding an inner partition
results in a 7.1% increase in cycle time and a 46.3% increase in energy per block
per iteration. For the full-buffer reshuffling, adding an inner partition results in a
7.2% increase in cycle time and a 43.8% increase in energy per block per iteration.

These results show that nesting partitions has the same impact on performance
and energy for width-adaptive write ports as it does on non-WAD write ports. The
relative impacts on performance and energy between the half-buffer and full-buffer
variations are similar. The absolute energy figures show that nesting combined with
width adaptivity can potentially reduce write port energy by 2/3 if the majority
of accesses hit in the fast partition.

9.7 Summary

In this final chapter, we have shown the feasibility of quasi-delay insensitively
(QDI) partitioning a register bank for non-uniform accesses without changing the
interconnect requirements, having built upon the basic idea from Chapter 8. Not
only did nesting create non-uniform cycle time accesses, but nesting also introduced
non-uniform read and write latencies, which may result in an average-case speedup
of the forward path of data through the datapath. The intention of nesting is to
exploit typical register usage frequencies to speed up the most common access
while allowing less frequently used registers to slow down.

We have derived the necessary circuit transformations from extensions of the
read and write port CHP, which were lowered into handshaking expansions, and
finally synthesized into production rules. By directing all accesses to the inner par-
tition through the outer partition, reusing unbalanced control validity completion
trees, and using ‘lightweight’ nested interconnects, the inner partition behaves like

144

a slower register to the outer partition, thus we were able to minimize (sometimes
eliminate) the changes to the original circuits for the non-nested designs. Had we
implemented full handshakes in the interconnect, more modifications to the outer
partition’s control would have been required, which may have potentially reduced
the speedup of fast accesses.

For all read and write ports in the design space, we have evaluated the differ-
ences in performance and energy introduced by nested partitioning, and computed
the breakeven probabilities that indicate when nesting is favorable. We found nest-
ing to be always beneficial because the breakeven probabilities never exceeded the
critical probability of 99%.

We measured the impact of adding a partition of registers to an existing bank
of registers. We conclude that one can add an arbitrary size inner partition and
while incurring only a small, constant performance penalty on the critical outer
partition. In other words, the inner partition of a nested asynchronous register file
may grow arbitrarily large while maintaining a constant performance level for a
fixed subset of registers (in the outer partition) with no external complexity !

The performance penalty for accessing the slow partition is relatively high
because of the conservativeness of the nested interconnect circuits that arises from
the QDI timing model. More aggressive designs can leverage timing assumptions
to reduce the slow access penalties, which would make make nesting even more
appealing for achieving average-case speedup for both throughput and latency.
However, in the interest of reducing energy, large register banks will benefit more
from nesting because the energy is dominated by the bit line capacitances.

Finally, we have demonstrated that nesting is completely compatible with all
previous register file techniques: vertical pipelining, width adaptivity, and banking.
The property that nesting does not increase the channel interface (and external
interconnect requirements) makes it very appealing as a local optimization that
can be applied on top of all other optimizations.

Chapter 10

Conclusion

10.1 Recapitulation

We have completed a lengthy tour of asynchronous register file design. Our jour-
ney began with the basic background for QDI asynchronous design and models
for the expected performance and energy consumption of register files. We then
worked through a specific example of how a typical asynchronous register file is
specified and decomposed into fine-grain concurrent processes, which can then
be compiled into robust circuits using known templates. For improved perfor-
mance, we pipelined the BYPASS and CORE processes to operate on four bits of
data per pipeline stage. To preserve the ordering and mutual-exclusion semantics
guaranteed by the CONTROL for reading and writing, we used pipeline-locking
in the control pipeline stages of the CORE . After writing out the handshaking
expansions (HSE) that describe the communication actions on the control and
data channels, we synthesized circuit production rules for the first version of the
pipelined asynchronous register file. The results for our initial design (including
the banked version) from Chapter 4 served as the baseline for comparison with
other versions of register files presented in the rest of the thesis. The first part of
the thesis contributes a reasonably detailed design of a QDI asynchronous register
file.

In Chapter 5, we introduced width-adaptive versions of the register file that
saved considerable energy in the average case by reducing the number of blocks that
switch and communicate. Width adaptivity is entirely transparent to the register
file control and results in little performance loss from the additional delimiter
bit per block. The design of the width-adaptive register file is the second major
contribution of this thesis.

We discussed some alternative implementations of the BYPASS that reduce the
number of access to the core: consuming and producing register zero operations
in the BYPASS (Chapter 6) and suppressing redundant copies from the core by
copying operands at the bypass (Port Priority Selection, in Chapter 7). These
alternatives require only simple modifications to the CONTROL processes.

We presented various register core organizations for improving performance and

145

146

energy. We have already seen that banking register files results in faster cycle times
and latencies and reduced energy because of reduced bit-line loads and reduced
path effort in the handshake cycle. However, the cost of banking lies in the use
of more channels, which may require multiplexing outside of the core. For a small
number of banks, the cost of multiplexing may be absorbed in the operand read
bypass.

When one cannot afford to add more banks, one can leverage typical register use
distributions to make non-uniform access registers with the purpose of accelerating
commonly used registers while allowing infrequently used registers to be slower.
We first introduced unbalanced control completion trees (with a fast path and a
slow path) to demonstrate the potential for average case reduction of cycle time
with minimal modifications and computing breakeven probabilities to assess when
unbalancing would be beneficial. However, unbalancing completion trees alone did
not offer much speedup because the read and write latencies were not affected.

To improve cycle times and latencies further, we designed nested register files,
which effectively isolated the load for half of the register array into its own in-
ner partition, which was connected to the fast outer partition through a delay-
insensitive interconnect. The interconnect was designed to make accesses to the
inner partition behave just like any other register (except for timing) from the
outer partition’s perspective. The delay-insensitive nature allows one to arbitrar-
ily connect deeper nests of register banks with no complexity in retiming. Nesting
introduced a much larger potential for reducing cycle time and latency through
accessing the fast registers, but also induced a greater penalty for accessing slow
registers. Significant energy can be saved by nesting because much of energy con-
sumed is due to the register array bit-line capacitance, which has been cut in half
for the outer partition. Not only is nesting useful for achieving average-case im-
provement, but it also means that one can arbitrarily extend a register file without
slowing down accesses to a fixed subset of registers; the addition of a large slower
partition has a only a small constant impact on the fast outer partition! The most
important point to take away from this thesis is that unbalancing completion trees
and delay-insensitive nesting have the design advantage of requiring no additional
external interconnects to the core, i.e., they are entirely local transformations that
incur no complexity in retiming or interconnect. Non-uniformly nested register-file
designs are the final and most significant contribution of this thesis. Finally, we
have demonstrated that all of the key transformations we have shown in this thesis
can be synthesized in any combination.

Designing around a QDI asynchronous timing model requires one to re-assess
techniques that may not otherwise be considered in the synchronous domain. One
lesson we have learned from the thesis is that the modular nature with which we
design asynchronous register files allows us to isolate and combine circuit modifi-
cations introduced by various transformations.

147

10.2 Choice

Consult your local computer engineer to see which

asynchronous register file is right for you.

After all this work, it is only natural to ask, “So which among all surveyed
asynchronous register files is the best?” The answer is a resounding “Really, it
depends.” It depends on the metric of interest, the overall architecture, and the
characteristics of the applications. For minimal area (maximal density) and sim-
plicity, an non-vertically-pipelined register file as described in Chapter 2 is the most
appealing. For energy only, an unpipelined register file has no control propagation
overhead, however a vertically pipelined, width-adaptive register file has greater
potential to reduce the number of bits communicated on the datapath. Banking
uniformly reduces the energy per port operation, while nesting reduces the energy
of accesses to the fast partition. For performance, one needs to determine whether
the cycle time or the read latency of register file accesses is more critical. Verti-
cal pipelining reduces the cycle time of the data handshakes, banking uniformly
reduces the cycle time of control handshakes, and unbalancing control completion
trees and nesting reduces the best-case cycle time of control handshakes. Banking
reduces all read latencies uniformly, whereas (non-uniform) nesting reduces the
best-case read latencies. Deciding whether or not to nest depends on the regis-
ter usage pattern of a given application, which depends partially on the register
allocator of the compiler if registers are statically assigned. Designing for a joint
metric such as energy efficiency (Eτ 2) requires a more careful assessment of the
tradeoff between energy and performance.

10.3 Future Work

Our survey of asynchronous register files was confined to a very tight design space.
After showing the initial base design, we restricted ourselves to using the same
register cell by re-using the same general floor decomposition of the same under-
lying handshake. For the basic register cell alone, there are many performance-,
density-, and energy-improving techniques common to synchronous register files
that we have not addressed. A follow-up study of how analog circuit techniques
may be used with asynchronous circuits may reveal interesting combinations that
compound the benefits we have shown in this thesis.

Since we have designed our register files around the one of the most conser-
vative (arguably overkill) timing models, QDI, an important question to ask may
be: what timing assumptions may offer improved performance while sustaining
maximal robustness? Such timing assumptions would impact our decomposition
of handshaking expansions into production rules by replacing many production
rules with implicit timing-based guarantees that specific events in the handshake
sequence have occurred. For example, production rules for write-validity wv in
each cell may be removed with the assumption that by the time the write control

148

and data validity signals have arrived, the write to the corresponding cell has com-
pleted, similar to that used in the design of an asynchronous DRAM [10]. We have
hinted in Chapter 9 where similar timing assumptions would benefit the design
without compromising robustness.

Much of our argument for non-uniform access register files pivots around the
probability distribution of typical logical register accesses. The next step would
be to ask whether or not register nesting would be beneficial to architectures that
dynamically rename logical registers to physical registers. Many questions arise
regarding the potential use of non-uniform access registers: What allocation and
de-allocation strategies would skew register usage distributions to favor a small
subset of physical registers? If we expose such non-uniformity as part of the ISA,
how can a compiler optimize the use of non-uniform registers? Can the hardware
or software schedule accesses to slower registers earlier to hide their latency? The
fact one may add an arbitrary number of registers to an inner partition of a nester
register file without slowing the outer partition invites architectural studies on
potential uses for larger and slower register banks, particularly for asynchronous
designs. Finally, at the architectural level, we have demonstrated nesting as a
method for implementing robust asynchronous non-uniform access register files
with no additional control complexity or retiming outside of the core — incon-
ceivable for synchronous designs with multi-cycle register accesses. Non-uniform
register accesses in asynchronous microprocessor designs should promote architec-
ture and application studies for heterogenous register-file organizations.

Appendix A

Summary of CHP Notation

The CHP notation we use is based on Hoare’s CSP [17]. A full description of
CHP and its semantics can be found in [29]. What follows is a short and informal
description.

• Assignment: a := b. This statement means “assign the value of b to a.” We
also write a↑ for a := true, and a↓ for a := false.

• Selection: [G1→ S1 [] ... [] Gn → Sn], where Gi ’s are boolean expressions
(guards) and Si ’s are program parts. The execution of this command cor-
responds to waiting until one of the guards is true, and then executing one
of the statements with a true guard. The notation [G] is short-hand for
[G → skip], and denotes waiting for the predicate G to become true. If the
guards are not mutually exclusive, we use the vertical bar “|” instead of “[].”

• Repetition: *[G1→ S1 [] ... [] Gn → Sn]. The execution of this command
corresponds to choosing one of the true guards and executing the correspond-
ing statement, repeating this until all guards evaluate to false. The notation
*[S] is short-hand for *[true → S].

• Send: X !e means send the value of e over channel X .

• Receive: Y ?v means receive a value over channel Y and store it in variable
v .

• Probe: The boolean expression X is true iff a communication over channel
X can complete without suspending.

• Sequential Composition: S ; T

• Parallel Composition: S ‖ T or S ,T .

• Simultaneous Composition: S •T both S and T are communication actions
and they complete simultaneously.

149

Appendix B

Bypass CHP

This appendix includes detailed CHP for many variations of the register file BYPASS
described throughout the thesis.

Unless otherwise specified, the CHP programs for BYPASS .BPZ[1] (and the
respective BLOCK pipeline versions) are equivalent to those of BYPASS .BPZ[0]
with their own set of local variables, and the CHP programs for BYPASS .BPZY
are equivalent to those of BYPASS .BPZX .

B.1 Base Design

The decomposition for the BYPASS of the base design is discussed in Section 2.4.

Program B.1 CHP: register file writeback bypass

BYPASS .BPZ[0] ≡
*[BPWB[0]?w0,BPZX [0]?zx0,

BPZY [0]?zy0,Z[0]?z0;
[w0 −→W [0]!z0 [] else −→ skip],
[zx0 −→ ZX [0]!z0 [] else −→ skip],
[zy0 −→ ZY [0]!z0 [] else −→ skip]
]

150

151

Program B.2 CHP: register file read bypass

BYPASS .BPZX ≡
*[BPX ?mx ;
[mx = ”z0” −→ ZX [0]?x
[]mx = ”z1” −→ ZX [1]?x
[]mx = ”core” −→ R[0]?x
];
X !x
]

152

B.2 Vertically Pipelined

Vertically pipelining of the BYPASS is discussed in Section 3.4.

Program B.3 CHP: pipelined register file read bypass

BYPASS .BPZX .BLOCK ≡
*[BPXi?mx ;

BPXo !mx ,
([mx = ”z0” −→ ZX [0]?x
[]mx = ”z1” −→ ZX [1]?x
[]mx = ”core” −→ R[0]?x
];
X !x)
]

Program B.4 CHP: pipelined register file writeback bypass

BYPASS .BPZ[0].BLOCK ≡
*[BPWBi[0]?w0,BPZXi[0]?zx0,

BPZYi[0]?zy0,Z[0]?z0;
[w0 −→W [0]!z0 [] else −→ skip],
[zx0 −→ ZX [0]!z0 [] else −→ skip],
[zy0 −→ ZY [0]!z0 [] else −→ skip],
BPWBo[0]!w0, BPZXo[0]!zx0, BPZYo[0]!zy0
]

153

B.3 Width-Adaptive

The width-adaptive CHP-level transformation is discussed in Section 5.3.

Program B.5 CHP: WAD read bypass

BYPASS .BPZX ≡
*[BPXi?mx ;
[mx = ”z0” −→ ZX [0]?x
[]mx = ”z1” −→ ZX [1]?x
[]mx = ”core” −→ R[0]?x
];
(X !x , [p(x) −→ BPXo !mx []t(x) −→ skip])
]

Program B.6 CHP: WAD writeback process

BYPASS .BPZ[0] ≡
*[BPWBi[0]?w0,BPZXi[0]?zx0,

BPZYi[0]?zy0,Z[0]?z0;
[w0 −→W [0]!z0 [] else −→ skip],
[zx0 −→ ZX [0]!z0 [] else −→ skip],
[zy0 −→ ZY [0]!z0 [] else −→ skip],
[p(z0) −→ BPWBo[0]!w0,BPZXo[0]!zx0,BPZYo[0]!zy0
[]t(z0) −→ skip
]

]

154

B.4 Register Zero

The modification for sourcing zero from the read bypass is discussed in Sec-
tion 6.2.1.

Program B.7 CHP: register file read bypass with source for hard-wired zero

BYPASS .BPZX ≡
*[BPX ?mx ;
[mx = ”z0” −→ ZX [0]?x
[]mx = ”z1” −→ ZX [1]?x
[]mx = ”zero” −→ x := 0
[]mx = ”core” −→ R[0]?x
];
X !x
]

155

B.5 Port Priority Select

The Port Priority Select modification for the read bypass is discussed in Section 7.2.

Program B.8 CHP: read bypasses with port priority select

BYPASS .BPZX ≡
*[BPX ?mx ,PPSBPX ?pp;
[mx = ”z0” −→ ZX [0]?x
[]mx = ”z1” −→ ZX [1]?x
[]mx = ”zero” −→ x := 0
[]mx = ”core” −→ R[0]?x
];
X !x ,
[pp −→ XY !x [] else −→ skip]

]

BYPASS .BPZY ≡
*[BPY ?my ;
[my = ”z0” −→ ZY [0]?y
[]my = ”z1” −→ ZY [1]?y
[]my = ”zero” −→ y := 0
[]my = ”fromX ” −→ XY ?y
[]my = ”core” −→ R[1]?y
];
Y !y

]

156

B.6 Banking

The bypass modifications for accommodating banked cores is described in Sec-
tion 4.4.3.

Program B.9 CHP: register file read bypass, for a dual-banked core

BYPASS .BPZX ≡
*[BPX ?mx ;
[mx = ”z0” −→ ZX [0]?x
[]mx = ”z1” −→ ZX [1]?x
[]mx = ”core[lo]” −→ R[0, lo]?x
[]mx = ”core[hi]” −→ R[0, hi]?x
];
X !x
]

Program B.10 CHP: register file writeback bypass, for dual-banked register core

BYPASS .BPZ[0] ≡
*[BPWB[0]?w0,BPZX [0]?zx0,

BPZY [0]?zy0,Z[0]?z0;
[w0 = ”lo” −→W [0, lo]!z0
[]w0 = ”hi” −→W [0, hi]!z0
[]else −→ skip],
[zx0 −→ ZX [0]!z0 [] else −→ skip],
[zy0 −→ ZY [0]!z0 [] else −→ skip]
]

Appendix C

Control CHP

This appendix includes the CHP for various versions of the register file CONTROL
described throughout the thesis.

C.1 Base Design

The decomposition for the CONTROL of the base design is discussed in Section 2.5.

157

158

Program C.1 CHP: register bypass control for base design

CONTROL.RSCOMP ≡
*[RS?rs ,RDRS ?zs ;
[zs 6= null −→ ZBUSRS ?zbs [] else −→ skip];
zx := rs 6= null ∧ rs = zs ∧ zs 6= 0;
[rs 6= null −→
[zx −→ RI [0]!null,BPZX [zbs]!true
[zbs = 0 −→ BPX !”z0” [] else −→ BPX !”z1”]

[]¬zx −→ RI [0]!rs ,
[zs 6= null −→ BPZX [zbs]!false [] else −→ skip],
BPX !”core”

]

[] else −→ skip
]

]

CONTROL.RTCOMP ≡
*[RT ?rt ,RDRT ?zt ;
[zt 6= null −→ ZBUSRT ?zbt [] else −→ skip];
zy := rt 6= null ∧ rt = zt ∧ zt 6= 0;
[rt 6= null −→
[zy −→ RI [1]!null,BPZY [zbt]!true
[zbt = 0 −→ BPY !”z0” [] else −→ BPY !”z1”]

[]¬zy −→ RI [1]!rt ,
[zt 6= null −→ BPZY [zbt]!false [] else −→ skip],
BPY !”core”

]

[] else −→ skip
]

]

159

Program C.2 CHP: register writeback control of base design

CONTROL.WBCTRL ≡
*[RDWB?zw ,Valid?val ;
[zw 6= null −→ ZBUSWB?zbw ; ZV [zbw]?zv ;
[val ∧ zv −→ BPWB[zbw]!true,WI [zbw]!zw ,WI [¬zbw]!null
[] else −→ BPWB[zbw]!false,WI [zbw]!null,WI [¬zbw]!null
]

[] else −→ skip
]

]

Program C.3 CHP: destination copy process

CONTROL.RDCOPY ≡
RDRS !null,RDRT !null,RDWB !null;
*[RD?rd ;

RDRS !rd ,RDRT !rd ,RDWB !rd
]

CONTROL.ZBCOPY ≡
*[ZBUS?zb;

ZBUSRS !zb,ZBUSRT !zb,ZBUSWB !zb
]

160

C.2 Banking

The control modification for supporting banked register core and bypass is dis-
cussed in Section 4.4.4.

Program C.4 CHP: register bypass control for dual-banked register core

CONTROL.RSCOMP ≡
*[RS?rs ,RDRS ?zs ;
[zs 6= null −→ ZBUSRS ?zbs [] else −→ skip];
zx := rs 6= null ∧ rs = zs ∧ zs 6= 0;
[rs 6= null −→
[zx −→ RI [0]!null,BPZX [zbs]!true
[zbs = 0 −→ BPX !”z0” [] else −→ BPX !”z1”]

[]¬zx −→ RI [0]!rs ,
[zs 6= null −→ BPZX [zbs]!false [] else −→ skip],
[rs < 16 −→ BPX !”core[lo]” [] else −→ BPX !”core[hi]”]

]

[] else −→ skip
]

]

CONTROL.RTCOMP ≡
*[RT ?rt ,RDRT ?zt ;
[zt 6= null −→ ZBUSRT ?zbt [] else −→ skip];
zy := rt 6= null ∧ rt = zt ∧ zt 6= 0;
[rt 6= null −→
[zy −→ RI [1]!null,BPZY [zbt]!true
[zbt = 0 −→ BPY !”z0” [] else −→ BPY !”z1”]

[]¬zy −→ RI [1]!rt ,
[zt 6= null −→ BPZY [zbt]!false [] else −→ skip],
[rt < 16 −→ BPY !”core[lo]” [] else −→ BPY !”core[hi]”]

]

[] else −→ skip
]

]

161

Program C.5 CHP: register writeback control for a banked register core

CONTROL.WBCTRL ≡
*[RDWB?zw ,Valid?val ;
[zw 6= null −→ ZBUSWB?zbw ; ZV [zbw]?zv ;
[val ∧ zv −→
[zw < 16 −→ BPWB[zbw]!”lo” [] else −→ BPWB[zbw]!”hi”],
COREWB[zbw]!true,WI [zbw]!zw ,WI [¬zbw]!null

[] else −→ BPWB[zbw]!false,COREWB[zbw]!false,
WI [zbw]!null,WI [¬zbw]!null

]

[] else −→ skip
]

]

162

C.3 Register Zero

The control modification to support reading 0 from the bypass is discussed in
Section 6.2.2. The control modification to support consuming writes to register
zero at the writeback bypass is discussed in Section 6.3.1.

Program C.6 CHP: register bypass control for reading 0 from the bypass

CONTROL.RSCOMP ≡
*[RS?rs ,RDRS ?zs ;
[zs 6= null −→ ZBUSRS ?zbs [] else −→ skip];
zx := rs 6= null ∧ rs = zs ∧ zs 6= 0;
[rs 6= null −→
[zx −→ RI [0]!null,BPZX [zbs]!true
[zbs = 0 −→ BPX !”z0” [] else −→ BPX !”z1”]

[]¬zx −→
[rs 6= 0 −→ RI [0]!rs [] else −→ RI [0]!null],
[zs 6= null −→ BPZX [zbs]!false [] else −→ skip],
[rs = 0 −→ BPX !”zero” [] else −→ BPX !”core”]

]

[] else −→ skip
]

]

Program C.7 CHP: register writeback control

CONTROL.WBCTRL ≡
*[RDWB?zw ,Valid?val ;
[zw = null −→ skip
[]zw = 0 −→ ZBUSWB?zbw ; ZV [zbw]?zv ;

BPWB[zbw]!false,WI [zbw]!null,WI [¬zbw]!null
[] else −→ ZBUSWB?zbw ; ZV [zbw]?zv ;

[val ∧ zv −→ BPWB[zbw]!true,COREWB[zbw]!true,
WI [zbw]!zw ,WI [¬zbw]!null

[] else −→ BPWB[zbw]!false,COREWB[zbw]!false,
WI [zbw]!null,WI [¬zbw]!null

]

]

]

163

C.4 Port Priority Select

Register file control modification for Port Priority Select is described in Section 7.3.

Program C.8 CHP: priority port comparator

CONTROL.RSRTEQ ≡
*[RSEQ?rs ,RTEQ?rt ;

eq := rs = rt ∧ rt 6= null;
EQRS !eq ,EQRT !eq

]

164

Program C.9 CHP: register bypass control, with priority port select

CONTROL.RSCOMP ≡
*[RSRS ?rs ,RDRS ?zs ,EQRS ?eqs ;
[zs 6= null −→ ZBUSRS ?zbs [] else −→ skip];
zx := rs 6= null ∧ rs = zs ∧ zs 6= 0;
[rs 6= null −→
[zx −→ RI [0]!null,BPZX [zbs]!true,
[zbs = 0 −→ BPX !”z0” [] else −→ BPX !”z1”],
PPSBPX !false

[]¬zx −→
[rs 6= 0 −→ RI [0]!rs [] else −→ RI [0]!null],
[zs 6= null −→ BPZX [zbs]!false [] else −→ skip],
[rs = 0 −→ BPX !”zero”,PPSBPX !false
[] else −→ BPX !”core”,PPSBPX !eqs
]

]

[] else −→ skip
]

]

CONTROL.RTCOMP ≡
*[RTRT ?rt ,RDRT ?zt ,EQRT ?eqt ;
[zt 6= null −→ ZBUSRT ?zbt [] else −→ skip];
zx := rs 6= null ∧ rs = zt ∧ zt 6= 0;
[rt 6= null −→
[zy −→ RI [1]!null,BPZY [zbt]!true
[zbt = 0 −→ BPY !”z0” [] else −→ BPY !”z1”]

[]¬zy −→
[rt 6= 0 ∧ ¬eqt −→ RI [1]!rt [] else −→ RI [1]!null],
[zt 6= null −→ BPZY [zbt]!false [] else −→ skip],
[rt = 0 −→ BPY !”zero”
[] rt 6= 0 ∧ eqt −→ BPY !”fromX ”
[] else −→ BPY !”core”
]

]

[] else −→ skip
]

]

Appendix D

Core CHP

This appendix includes CHP programs for various transformations of the register
file CORE presented throughout the thesis.

D.1 Pipelined Core

The pipeline transformations and locking mechanisms for the CORE are discussed
in Section 3.5.

Program D.1 CHP: unpipelined multiported register

RPORT[i].RDATA[l] ≡
*[[RC[l , i]]; R[i]!reg[l]; RC[l , i]]

WPORT[j].WDATA[l] ≡
*[[WC[l , j]]; W [j]?reg[l]; WC[l , j]]

REGDATA[l] ≡
〈‖ ∀i : RPORT[i].RDATA[l]〉
‖ 〈‖ ∀j : WPORT[j].WDATA[l]〉

Program D.2 CHP: pipelined, multiported register block

RPORT[i].RDATA[l].BLOCK ≡
*[[RCi[l , i]]; (R[i]!reg[l],RCo[l , i]); RCi[l , i]]

WPORT[j].WDATA[l].BLOCK ≡
*[[WCi[l , j]]; (W [j]?reg[l],WCo[l , j]); WCi[l , j]]

REGDATA[l].BLOCK ≡
〈‖ ∀i : RPORT[i].RDATA[l].BLOCK 〉
‖ 〈‖ ∀j : WPORT[j].WDATA[l].BLOCK 〉

165

166

Program D.3 CHP: pipelined register block with locking

RPORT[i].RDATA[l].BLOCK ≡
*[[RC ′[l , i]]; rx[l , i]↑; RC ′[l , i];

(R[i]!reg[l],RCo[l , i]); rx[l , i]↓
]

‖ *[[RCi[l , i] ∧ 〈∧∀j : ¬wx[l , j]〉];
RC ′[l , i]; RCi[l , i]
]

WPORT[j].WDATA[l].BLOCK ≡
*[[WC ′[l , j]]; wx[l , j]↑; WC ′[l , j];

(W [j]?reg[l],WCo[l , j]); wx[l , j]↓
]

‖ *[[WCi[l , j] ∧ 〈∧∀i : ¬rx[l , i]〉 ∧ 〈∧∀k 6= j : ¬wx[l , k]〉];
WC ′[l , j]; WCi[l , j]
]

REGDATA[l].BLOCK ≡
〈‖ ∀i : RPORT[i].RDATA[l].BLOCK 〉
‖ 〈‖ ∀j : WPORT[j].WDATA[l].BLOCK 〉

Program D.4 CHP: pipelined register read port with locking at the sender

RPORT[i].RDATA[l].BLOCK ≡
*[RC ′[l , i]; R[i]!reg[l]; RC ′′[l , i]]

‖ *[[RCi[l , i]]; RC ′[l , i];
[〈∧∀j : ¬wx[l , j]〉]; rx[l , i]↑;
(RCo[l , i], (RC ′′[l , i]; RCi[l , i])); rx[l , i]↓
]

Program D.5 CHP: pipelined register write port with locking at the sender

WPORT[j].WDATA[l].BLOCK ≡
*[WC ′[l , j]; W [j]?reg[l]; WC ′′[l , j]]

‖ *[[WCi[l , j]]; WC ′[l , j];
[〈∧∀i : ¬rx[l , i]〉 ∧ 〈∧∀k 6= j : ¬wx[l , k]〉]; wx[l , j]↑;
(WCo[l , j], (WC ′′[l , j]; WCi[l , j])); wx[l , j]↓
]

167

Program D.6 CHP: read port demux, with locking

RPORT[i].RDEMUX ≡
*[RI [i]?ri[i];
[ri[i] 6= null −→ [〈∧∀j : ¬wx[l , j]〉];

rx[l , i]↑; RC[ri[i], i]!; rx[l , i]↓
[]else −→ skip
]

]

Program D.7 CHP: write port demux, with locking

WPORT[j].WDEMUX ≡
*[WI [j]?wi[j];
[wi[j] 6= null −→ [〈∧∀i : ¬rx[l , i]〉 ∧ 〈∧∀k 6= j : ¬wx[l , k]〉];

wx[l , j]↑; WC[wi[j], j]!; wx[l , j]↓
[]else −→ skip
]

]

Program D.8 CHP: pipelined, multiported zero-register block

RPORT[i].RDATA[0].BLOCK ≡
*[RCi[0, i]; (R[i]!0,RCo[0, i])]

WPORT[j].WDATA[0].BLOCK ≡
*[WCi[0, j]; (W [j]?,WCo[0, j])]

REGDATA[0].BLOCK ≡
〈‖ ∀i : RPORT[i].RDATA[0].BLOCK 〉
‖ 〈‖ ∀j : WPORT[j].WDATA[0].BLOCK 〉

168

D.2 WAD Core

The width-adaptive transformation for the CORE is discussed in Section 5.3.2.

Program D.9 CHP: WAD read port, without locking in the termination case

RPORT[i].RDATA[l].BLOCK ≡
*[[RCi[l , i]]; R[i]!reg[l]]

‖ *[[p(reg[l]) ∧ RCi[l , i] ∧ 〈∀j : ¬wx[l , j]〉 −→
rx[l , i]↑; (RCo[l , i],RCi[l , i]); rx[l , i]↓

[]t(reg[l]) ∧ RCi[l , i] −→ RCi[l , i]
]]

Program D.10 CHP: WAD register write port, without locking in the terminating
case
WPORT[i].WDATA[l].BLOCK ≡

*[[WCi[l , j]]; W [j]?reg[l]]

‖ *[[p(W [j]) ∧WCi[l , j] ∧ 〈∀i : ¬rx[l , i]〉 ∧ 〈∀k 6= j : ¬wx[l , k]〉 −→
wx[l , j]↑; (WCo[l , j],WCi[l , j]); wx[l , j]↓

[]t(W [j]) ∧WCi[l , j] −→WCi[l , j]
]]

169

D.3 Nested Core

The nesting transformation for the base register CORE is discussed in Section 9.2.1.

Program D.11 CHP: nested partitions read, with unconditional pipeline-locked con-
trol propagation
RPORT[i].RDATA[l].BLOCKouter ≡

*[RC ′[l , i]; R[i]!reg[l]; RC ′′[l , i]]

‖ *[[RCi[l , i]]; RC ′[l , i]; [〈∧∀j : ¬wx[l , j]〉];
rx[l , i]↑; (RCo[l , i], (RC ′′[l , i]; RCi[l , i])); rx[l , i]↓
]

RPORT[i].RDATA.CONNECT ≡
*[[IRCi[i] ∧ RC inner[i]];
(R[i]!(IR[i]?), IRCo[i], IRCi[i])
]

RPORT[i].RDATA[l].BLOCKinner ≡
*[IRC ′[l , i]; IR[i]!reg[l]; IRC ′′[l , i]]

‖ *[[IRCi[l , i]]; IRC ′[l , i]; [〈∧∀j : ¬wx[l , j]〉];
rx[l , i]↑; (IRCo[l , i], (IRC ′′[l , i]; IRCi[l , i])); rx[l , i]↓
]

Program D.12 CHP: nested partition write, with unconditional pipeline-locked control
propagation
WPORT[j].WDATA[l].BLOCKouter ≡

*[WC ′[l , j]; W [j]?reg[l]; WC ′′[l , j]]

‖ *[[WCi[l , j]]; WC ′[l , j]; [〈∧∀i : ¬rx[l , i]〉 ∧ 〈∧∀k 6= j : ¬wx[l , k]〉];
wx[l , j]↑; (WCo[l , j], (WC ′′[l , j]; WCi[l , j])); wx[l , j]↓
]

WPORT[j].WDATA.CONNECT ≡
*[[IWCi[j] ∧WC inner[j]];
(IW [j]!(W [j]?), IWCo[j], IWCi[j])
]

WPORT[j].WDATA[l].BLOCKinner ≡
*[IWC ′[l , j]; IW [j]?reg[l]; IWC ′′[l , j]]

‖ *[[IWCi[l , j]]; IWC ′[l , j]; [〈∧∀i : ¬rx[l , i]〉 ∧ 〈∧∀k 6= j : ¬wx[l , k]〉];
wx[l , j]↑; (IWCo[l , j], (IWC ′′[l , j]; IWCi[l , j])); wx[l , j]↓
]

170

Program D.13 CHP: read and write demuxes for nested partitioning, port i

RPORT[i].RDEMUXnested ≡
*[ri[i] := RI [i];
[ri[i] 6= null −→
[ri[i] < 16 −→ RC ri[i][i]!
[]ri[i] ≥ 16 −→ RC inner[i]!, IRC ri[i][i]!
]

[] else −→ skip
];
RI [i]?
]

WPORT[i].WDEMUXnested ≡
*[wi[i] := WI [i];
[wi[i] 6= null −→
[wi[i] < 16 −→WC wi[i][i]!
[]wi[i] ≥ 16 −→WC inner[i]!, IWC wi[i][i]!
]

[] else −→ skip
];
WI [i]?
]

171

D.4 WAD Nested Core

The nesting transformation for the width-adaptive register CORE is discussed in
Section 9.2.2.

Program D.14 CHP: nested partitions read, with WAD pipeline-locked control prop-
agation
RPORT[i].RDATA[l].BLOCKwad ,outer ≡

*[RC ′[l , i]; R[i]!reg[l]; RC ′′[l , i]]

‖ *[[RCi[l , i]]; RC ′[l , i];
[p(reg[l]) ∧ 〈∀j : ¬wx[l , j]〉 −→

rx[l , i]↑; (RCo[l , i], (RC ′′[l , i]; RCi[l , i])); rx[l , i]↓
[]t(reg[l]) −→ RC ′′[l , i]; RCi[l , i]
]]

RPORT[i].RDATA.CONNECT ≡
*[[IRCi[i] ∧ RC inner[i]];
(R[i]!(IR[i]?), IRCo[i], IRCi[i])
]

RPORT[i].RDATA[l].BLOCKwad ,inner ≡
*[IRC ′[l , i]; IR[i]!reg[l]; IRC ′′[l , i]]

‖ *[[IRCi[l , i]]; IRC ′[l , i];
[p(reg[l]) ∧ 〈∀j : ¬wx[l , j]〉 −→

rx[l , i]↑; (IRCo[l , i], (IRC ′′[l , i]; IRCi[l , i])); rx[l , i]↓
[]t(reg[l]) −→ IRC ′′[l , i]; IRCi[l , i]
]]

172

Program D.15 CHP: nested partition write, with WAD pipeline-locked control prop-
agation
WPORT[j].WDATA[l].BLOCKouter ≡

*[WC ′[l , j]; W [j]?reg[l]; WC ′′[l , j]]

‖ *[WCi[l , j]; WC ′[l , j];

[p(W [j]) ∧ 〈∀i : ¬rx[l , i]〉 ∧ 〈∀k 6= j : ¬wx[l , k]〉 −→
wx[l , j]↑; (WCo[l , j], (WC ′′[l , j]; WCi[l , j])); wx[l , j]↓

[]t(W [j]) −→WC ′′[l , j]; WCi[l , j]
]]

WPORT[j].WDATA.CONNECT ≡
*[[IWCi[j] ∧WC inner[j]];
(IW [j]!(W [j]?), IWCo[j], IWCi[j])
]

WPORT[j].WDATA[l].BLOCKinner ≡
*[IWC ′[l , j]; IW [j]?reg[l]; IWC ′′[l , j]]

‖ *[IWCi[l , j]; IWC ′[l , j];

[p(IW [j]) ∧ 〈∀i : ¬rx[l , i]〉 ∧ 〈∀k 6= j : ¬wx[l , k]〉 −→
wx[l , j]↑; (IWCo[l , j], (IWC ′′[l , j]; IWCi[l , j])); wx[l , j]↓

[]t(IW [j]) −→ IWC ′′[l , j]; IWCi[l , j]
]]

Appendix E

Core HSE

This appendix includes the handshaking expansions (HSE) for the various versions
of the register file CORE presented throughout the thesis.

E.1 Pipelined Core

The pipeline transformations and locking mechanisms for the CORE are presented
in Sections 4.1.2 and 4.1.3.

173

174

E.2 WAD Core

The width-adaptive transformation for the CORE is discussed in Section 5.4.

Program E.1 HSE: PCEVFB WAD read port

*[(([Re
o]; renD↑; [RCi]; Ro↑),

([RC e
o]; renC↑;

[RCi ∧ p(reg) ∧ unlocked() −→ lock ; RCo↑[]t(reg) −→ skip]));
RC e

i ↓;
(([¬Re

o]; renD↓; Ro↓),
([(p(reg) ∧ ¬RC e

o) ∨ t(reg)]; renC↓; unlock ; RCo↓),
([¬RCi ∧ ¬renD ∧ ¬renC]; RC e

i ↑))
]

Program E.2 HSE: PCEVHB WAD read port with full-buffered data output, and
half-buffered control propagation

*[(([Re
o]; renD↑; [RCi]; Ro),

([RC e
o]; renC↑;

[RCi ∧ p(reg) ∧ unlocked() −→ lock ; RCo↑[]t(reg) −→ skip]));
RC e

i ↓;
(([¬Re

o]; renD↓; Ro↓),
([(p(reg) ∧ ¬RC e

o) ∨ t(reg)]; renC↓;
unlock ; RCo↓; [¬renD ∧ ¬RCi]; RC e

i ↑))
]

Program E.3 HSE: PCEVFB WAD write port, with unconditional write-enable

*[[WC e
o]; wen↑;

[WCi ∧ unlocked() ∧ p(Wi) −→ lock ; WCo↑[]t(Wi) −→ skip];
[wvc]; WC e

i ↓;
[(p(Wi) ∧ ¬WC e

o) ∨ t(Wi)]; wen↓;
((unlock ; WCo↓), ([¬WCi ∧ ¬wvc]; WC e

i ↑))
]

*[[WCi ∧Wi]; 〈write〉; wvc↑; [¬Wi]; wvc↓]

175

Program E.4 HSE: PCEVHB WAD write port, with unconditional write-enable

*[[WC e
o]; wen↑;

[WCi ∧ unlocked() ∧ p(Wi) −→ lock ; WCo↑[]t(Wi) −→ skip];
[wvc]; WC e

i ↓;
[(p(Wi) ∧ ¬WC e

o) ∨ t(Wi)]; wen↓; unlock ; WCo↓;
[¬WCi ∧ ¬wvc]; WC e

i ↑
]

*[[WCi ∧Wi]; 〈write〉; wvc↑; [¬Wi]; wvc↓]

Program E.5 HSE: PCEVFB WAD write port, with conditional write-enable

*[[WC e
o ∧ p(Wi) −→ wen↑; [WCi ∧ unlocked()]; lock ; WCo↑

[]t(Wi) −→ skip];
[wvc]; WC e

i ↓;
[¬WC e

o]; wen↓;
((unlock ; WCo↓), ([¬WCi ∧ ¬wvc]; WC e

i ↑))
]

*[[WCi ∧Wi]; 〈write〉; wvc↑; [¬Wi]; wvc↓]

Program E.6 HSE: PCEVHB WAD write port, with conditional write-enable

*[[WC e
o ∧ p(Wi) −→ wen↑; [WCi ∧ unlocked()]; lock ; WCo↑

[]t(Wi) −→ skip];
[wvc]; WC e

i ↓;
[¬WC e

o]; wen↓; unlock ; WCo↓;
[¬WCi ∧ ¬wvc]; WC e

i ↑
]

*[[WCi ∧Wi]; 〈write〉; wvc↑; [¬Wi]; wvc↓]

176

E.3 Non-WAD Nested Core

The template nesting transformations for the non-WAD read and write ports are
discussed in Sections 9.3.1 and 9.3.2.

Program E.7 HSE: PCEVFB data-independent read port with nested data

*[(([Re
o]; renD↑);

[RCi ,inner −→ irenD↑; [IRCi]; IRo↑; Ro↑[]RCi ,outer −→ Ro↑]),
(([RC e

o]; renC↑);
[RCi ,inner −→ [IRC e

o]; irenC↑; [IRCi ∧ unlocked() −→ lock ; IRCo↑];
(IRC e

i ↓, ([Ro]; RC e
i ↓))

[]RCi ,outer −→ [unlocked() −→ lock ; RCo↑]; [Ro]; RC e
i ↓

]);
(([¬Re

o]; renD↓;
([RCi ,inner −→ irenD↓; IRo↓[]RCi ,outer −→ skip],Ro↓)),

([¬RC e
o]; renC↓;

[RCi ,inner −→ [¬IRC e
o]; irenC↓; ((unlock ; IRCo↓), ([¬IRCi]; IRC e

i ↑))
[]RCi ,outer −→ unlock ; RCo↓
]),

([¬renD ∧ ¬renC ∧ ¬RCi]; RC e
i ↑)

)
]

177

Program E.8 HSE: PCEVHB data-independent read port with nested data, full-
buffered data output, and half-buffered control propagation

*[(([Re
o]; renD↑);

[RCi ,inner −→ irenD↑; [IRCi]; IRo↑; Ro↑[]RCi ,outer −→ Ro↑]),
(([RC e

o]; renC↑);
[RCi ,inner −→ [IRC e

o]; irenC↑; [IRCi ∧ unlocked() −→ lock ; IRCo↑];
(IRC e

i ↓, ([Ro]; RC e
i ↓))

[]RCi ,outer −→ [unlocked() −→ lock ; RCo↑]; [Ro]; RC e
i ↓

]);
(([¬Re

o]; renD↓;
([RCi ,inner −→ irenD↓; IRo↓[]RCi ,outer −→ skip],Ro↓)),

([¬RC e
o]; renC↓;

[RCi ,inner −→ [¬IRC e
o]; irenC↓;

((unlock ; IRCo↓; [¬renD ∧ ¬RCi]; RC e
i ↑), ([¬IRCi]; IRC e

i ↑))
[]RCi ,outer −→ unlock ; RCo↓; [¬renD ∧ ¬RCi]; RC e

i ↑
])

)
]

Program E.9 HSE: PCEVFB data-independent write port, with nested data

*[[WC e
o]; wen↑;

[WCi ,inner −→ [IWC e
o]; iwen↑; [unlocked()]; lock ; IWCo↑;

(IWC e
i ↓, ([wvc]; WC e

i ↓))
[]WCi ,outer −→ [unlocked()]; lock ; WCo↑; [wvc]; WC e

i ↓;
];
[¬WC e

o]; wen↓;
[WCi ,inner −→ [¬IWC e

o]; iwen↓;
((unlock ; IWCo↓), [¬IWCi −→ IWC e

i ↑, ([¬WCi ∧ ¬wvc]; WC e
i ↑)])

[]WCi ,outer −→ (unlock ; WCo↓), ([¬WCi ∧ ¬wvc]; WC e
i ↑)

]

]

‖
*[[WCi ,inner −→ [Wi]; IW ↑; 〈writeinner〉
[]WCi ,outer −→ [Wi]; 〈writeouter〉
];
wvc↑;
[¬Wi]; (IW ↓; wvc↓)
]

178

Program E.10 HSE: PCEVHB data-independent write port, with nested data

*[[WC e
o]; wen↑;

[WCi ,inner −→ [IWC e
o]; iwen↑; [unlocked()]; lock ; IWCo↑;

(IWC e
i ↓, ([wvc]; WC e

i ↓))
[]WCi ,outer −→ [unlocked()]; lock ; WCo↑; [wvc]; WC e

i ↓
];
[¬WC e

o]; wen↓;
[WCi ,inner −→ [¬IWC e

o]; iwen↓;
((unlock ; IWCo↓; [¬WCi ∧ ¬wvc]; WC e

i ↑),
([¬IWCi]; IWC e

i ↑))
[]WCi ,outer −→ unlock ; WCo↓; [¬WCi ∧ ¬wvc]; WC e

i ↑
]

]

‖
*[[WCi ,inner −→ [Wi]; IW ↑; 〈writeinner〉
[]WCi ,outer −→ [Wi]; 〈writeouter〉
];
wvc↑;
[¬Wi]; (IW ↓; wvc↓)
]

179

E.4 WAD Nested Core

The template nesting transformations for the WAD read and write ports are dis-
cussed in Sections 9.3.3 and 9.3.4.

Program E.11 HSE: PCEVFB WAD read port with nested data

*[(([Re
o]; renD↑);

[RCi ,inner −→ irenD↑; [IRCi]; IRo↑; Ro↑[]RCi ,outer −→ Ro↑]),
(([RC e

o]; renC↑);
[RCi ,inner −→ [IRC e

o]; irenC↑; [IRCi];
[p(reg) ∧ unlocked() −→ lock ; IRCo↑[]t(reg) −→ skip];
(IRC e

i ↓, ([Ro]; RC e
i ↓))

[]RCi ,outer −→ [p(reg) ∧ unlocked() −→ lock ; RCo↑[]t(reg) −→ skip];
[Ro]; RC e

i ↓
]);

(([¬Re
o]; renD↓;

([RCi ,inner −→ irenD↓; IRo↓[]RCi ,outer −→ skip],Ro↓)),
([(p(reg) ∧ ¬RC e

o) ∨ t(reg)]; renC↓;
[RCi ,inner −→ [(p(reg) ∧ ¬IRC e

o) ∨ t(reg)]; irenC↓;
((unlock ; IRCo↓), ([¬IRCi]; IRC e

i ↑))
[]RCi ,outer −→ unlock ; RCo↓
]),

([¬renD ∧ ¬renC ∧ ¬RCi]; RC e
i ↑)

)
]

180

Program E.12 HSE: PCEVHB WAD read port with nested data, full-buffered data
output, and half-buffered control propagation

*[(([Re
o]; renD↑);

[RCi ,inner −→ irenD↑; [IRCi]; IRo↑; Ro↑[]RCi ,outer −→ Ro↑]),
(([RC e

o]; renC↑);
[RCi ,inner −→ [IRC e

o]; irenC↑; [IRCi];
[p(reg) ∧ unlocked() −→ lock ; IRCo↑[]t(reg) −→ skip];
(IRC e

i ↓, ([Ro]; RC e
i ↓))

[]RCi ,outer −→ [p(reg) ∧ unlocked() −→ lock ; RCo↑[]t(reg) −→ skip];
[Ro]; RC e

i ↓
]);

(([¬Re
o]; renD↓;

([RCi ,inner −→ irenD↓; IRo↓[]RCi ,outer −→ skip],Ro↓)),
([(p(reg) ∧ ¬RC e

o) ∨ t(reg)]; renC↓;
[RCi ,inner −→ [(p(reg) ∧ ¬IRC e

o) ∨ t(reg)]; irenC↓;
(unlock ; IRCo↓; ([¬renD ∧ ¬RCi]; RC e

i ↑), ([¬IRCi]; IRC e
i ↑))

[]RCi ,outer −→ unlock ; RCo↓; [¬renD ∧ ¬RCi]; RC e
i ↑

])
)
]

Program E.13 HSE: PCEVFB WAD write port, with nested data, unconditional outer
write-enable, conditional inner write-enable variation

*[[WC e
o]; wen↑;

[WCi ,inner −→
[p(IW) ∧ IWC e

o −→ iwen↑;
[unlocked()]; lock ; IWCo↑[]t(IW) −→ skip];
(IWC e

i ↓, ([wvc]; WC e
i ↓))

[]WCi ,outer −→
[p(Wi) ∧ unlocked() −→ lock ; WCo↑[]t(Wi) −→ skip];
[wvc]; WC e

i ↓;
];
[(p(Wi) ∧ ¬WC e

o) ∨ t(Wi)]; wen↓;
[WCi ,inner −→ [¬IWC e

o]; iwen↓;
((unlock ; IWCo↓), [¬IWCi −→ IWC e

i ↑, ([¬WCi ∧ ¬wvc]; WC e
i ↑)])

[]WCi ,outer −→ (unlock ; WCo↓), ([¬WCi ∧ ¬wvc]; WC e
i ↑)

]

]

‖
*[[WCi ,inner −→ [Wi]; IW ↑; 〈writeinner〉[]WCi ,outer −→ [Wi]; 〈writeouter〉];

wvc↑; [¬Wi]; (IW ↓; wvc↓)
]

181

Program E.14 HSE: PCEVHB WAD write port, with nested data, unconditional
outer write-enable, conditional inner write-enable variation

*[[WC e
o]; wen↑;

[WCi ,inner −→
[p(IW) ∧ IWC e

o −→ iwen↑;
[unlocked()]; lock ; IWCo↑[]t(IW) −→ skip];
(IWC e

i ↓, ([wvc]; WC e
i ↓))

[]WCi ,outer −→
[p(Wi) ∧ unlocked() −→ lock ; WCo↑[]t(Wi) −→ skip];
[wvc]; WC e

i ↓;
];
[(p(Wi) ∧ ¬WC e

o) ∨ t(Wi)]; wen↓;
[WCi ,inner −→ [¬IWC e

o]; iwen↓;
((unlock ; IWCo↓), [¬IWCi −→ IWC e

i ↑, ([¬IWCo ∧ ¬WCi ∧ ¬wvc]; WC e
i ↑)])

[]WCi ,outer −→ unlock ; WCo↓; [¬WCi ∧ ¬wvc]; WC e
i ↑

]

]

‖
*[[WCi ,inner −→ [Wi]; IW ↑; 〈writeinner〉[]WCi ,outer −→ [Wi]; 〈writeouter〉];

wvc↑; [¬Wi]; (IW ↓; wvc↓)
]

Program E.15 HSE: PCEVFB WAD write port, with nested data, conditional outer
write-enable, conditional inner write-enable variation

*[[p(Wi) ∧WC e
o −→ wen↑;

[WCi ,inner −→
[p(IW) ∧ IWC e

o −→ iwen↑;
[unlocked()]; lock ; IWCo↑[]t(IW) −→ skip];
(IWC e

i ↓, ([wvc]; WC e
i ↓))

[]WCi ,outer −→ [unlocked()]; lock ; WCo↑; [wvc]; WC e
i ↓;

]

[]t(Wi) −→ skip
];
[¬WC e

o]; wen↓;
[WCi ,inner −→ [¬IWC e

o]; iwen↓;
((unlock ; IWCo↓), [¬IWCi −→ IWC e

i ↑, ([¬WCi ∧ ¬wvc]; WC e
i ↑)])

[]WCi ,outer −→ (unlock ; WCo↓), ([¬WCi ∧ ¬wvc]; WC e
i ↑)

]

]

‖
*[[WCi ,inner −→ [Wi]; IW ↑; 〈writeinner〉[]WCi ,outer −→ [Wi]; 〈writeouter〉];

wvc↑; [¬Wi]; (IW ↓; wvc↓)
]

182

Program E.16 HSE: PCEVFB WAD write port, with nested data, conditional outer
write-enable, conditional inner write-enable variation

*[[p(Wi) ∧WC e
o −→ wen↑;

[WCi ,inner −→
[p(IW) ∧ IWC e

o −→ iwen↑;
[unlocked()]; lock ; IWCo↑[]t(IW) −→ skip];
(IWC e

i ↓, ([wvc]; WC e
i ↓))

[]WCi ,outer −→ [unlocked()]; lock ; WCo↑; [wvc]; WC e
i ↓;

]

[]t(Wi) −→ skip
];
[¬WC e

o]; wen↓;
[WCi ,inner −→ [¬IWC e

o]; iwen↓;
((unlock ; IWCo↓), [¬IWCi −→ IWC e

i ↑, ([¬IWCo ∧ ¬WCi ∧ ¬wvc]; WC e
i ↑)])

[]WCi ,outer −→ unlock ; WCo↓; [¬WCi ∧ ¬wvc]; WC e
i ↑

]

]

‖
*[[WCi ,inner −→ [Wi]; IW ↑; 〈writeinner〉[]WCi ,outer −→ [Wi]; 〈writeouter〉];

wvc↑; [¬Wi]; (IW ↓; wvc↓)
]

Appendix F

Partial HSEs of the Core

This appendix contains partial HSEs for the various components of the CORE
floor decompositions throughout the thesis.

F.1 Non-WAD Core

The partial HSEs for the base design (non-width-adaptive) core appear in the text
of Section 4.2.

183

184

F.2 WAD Core

The WAD floor decompositions follow very closely to the non-WAD floor decom-
positions and are not repeated in the thesis. We provide the resulting HSEs for
the decomposed control components in this section.

F.2.1 Reading Control

Program F.1 HSE: WAD read control propagation array, where the termination con-
dition only sets RCfo
REG CTRL PROPread ,wad[l] ≡

*[[RCi[l] ∧ renC];
[dx 0[l] ∧ 〈unlocked[l]〉 −→ lockr[l]↑; RCo[l]↑; RC v

o ↑
[]dx 1[l] −→ RC f

o ↑];
[¬renC]; lockr[l]↓; RCo[l]↓; RC v

o ↓
]

Program F.2 HSE: WAD read handshake control (full buffer)

REG HSENread ,wad ,fullbuf ≡
*[[RC e

o]; renC↑; [(RC f
o ∨ RC v

o) ∧ RC v
i ∧ renv ∧ Rv]; RC e

i ↓;
[RC f

o ∨ ¬RC e
o]; renC↓; (RC f

o ↓, ([¬RC v
i ∧ ¬renv]; RC e

i ↑)); [¬RC v
o]

]

Program F.3 HSE: WAD read handshake control (full buffered propagation, half-
buffered termination)

REG HSENread ,wad ,fullbuf ≡
*[[RC e

o]; renC↑; [(RC f
o ∨ RC v

o) ∧ RC v
i ∧ renv ∧ Rv]; RC e

i ↓;
[RC f

o ∨ ¬RC e
o]; renC↓; RC f

o ↓; [¬RC v
i ∧ ¬renv]; RC e

i ↑; [¬RC v
o]

]

185

F.2.2 Writing Control, Unconditional Write-Enable

Program F.4 HSE: the WAD write control propagation array, for unconditional write-
enable
REG CTRL PROPwrite,wad ,uwen[l] ≡

*[[WCi[l] ∧ wen ∧ dW 0[l] ∧ 〈unlocked[l]〉];
lockw[l]↑; WCo[l]↑; WC v

o ↑;
[¬wen]; lockw[l]↓; WCo[l]↓; WC v

o ↓
]

Program F.5 HSE: WAD write handshake control, with unconditional write-enable
(full buffer)

REG HSENwrite,wad ,uwen,fullbuf ≡
*[[WC e

o]; wen↑; [dW 1 −→WC f
o ↑[]else −→ skip];

[(WC f
o ∨WC v

o) ∧WC v
i ∧ wvc]; WC e

i ↓;
[WC f

o ∨ ¬WC e
o]; wen↓; (WC f

o ↓, [¬WC v
i ∧ ¬wvc]; WC e

i ↑); [¬WC v
o]

]

Program F.6 HSE: WAD write handshake control, with unconditional write-enable
(full buffer propagation, half buffer termination)

REG HSENwrite,wad ,uwen,fullbuf ≡
*[[WC e

o]; wen↑; [dW 1 −→WC f
o ↑[]else −→ skip];

[(WC f
o ∨WC v

o) ∧WC v
i ∧ wvc]; WC e

i ↓;
[WC f

o ∨ ¬WC e
o]; wen↓; WC f

o ↓; [¬WC v
i ∧ ¬wvc]; WC e

i ↑; [¬WC v
o]

]

186

F.2.3 Writing Control, Conditional Write-Enable

Program F.7 HSE: WAD write control propagation array, with conditional write-
enable
REG CTRL PROPwrite[l] ≡

*[[WCi[l] ∧ wen ∧ 〈unlocked[l]〉]; lockw[l]↑; WCo[l]↑; WC v
o ↑;

[¬wen]; lockw[l]↓; WCo[l]↓; WC v
o ↓

]

Program F.8 HSE: WAD write handshake control, conditional write-enable (full
buffer)

REG HSENwrite,wad ,cwen,fullbuf ≡
*[[dW 0 −→ [WC e

o]; wen↑[]dW 1 −→ skip];
[(dW 1 ∨WC v

o) ∧WC v
i ∧ wvc]; WC e

i ↓;
[¬WC e

o]; wen↓; [¬WC v
i ∧ ¬wvc]; WC e

i ↑; [¬WC v
o]

]

Program F.9 HSE: WAD write handshake control, conditional write-enable (half
buffer)

REG HSENwrite,wad ,cwen,halfbuf ≡
*[[dW 0 −→ [WC e

o]; wen↑[]dW 1 −→ skip];
[(dW 1 ∨WC v

o) ∧WC v
i ∧ wvc]; WC e

i ↓;
[¬WC e

o]; wen↓; [¬WC v
o ∧ ¬WC v

i ∧ ¬wvc]; WC e
i ↑;

]

187

F.3 Non-WAD Nested Core

The decompositions of the non-WAD nested core read and write ports are discussed
in Section 9.4.

F.3.1 Modified Data Interface

The modifications to the peripheral data interface required by the nesting trans-
formation are described in Sections 9.4.1 and 9.4.2.

Program F.10 HSE: the register read data interface with R reset, modified for use
with nested data arrays
REG INTRFCread ,nested[b] ≡

*[[Re ∧ RC e
i ∧ ¬IRv

o]; renD[b]↑; [¬ R[b]]; R[b]↑;
[¬Re ∧ ¬RC e

i]; renD[b]↓; R[b]↑; R[b]↓
]

Program F.11 HSE: resetting the write validity bitline

REG INTRFCwrite,nested[b] ≡
*[[¬Wi[b] ∧ iwv]; wv[b]↑]

188

F.3.2 Nested Data Interconnect

The partial HSEs of the nested data interconnect component are described in
Sections 9.4.1 and 9.4.2.

Program F.12 HSE: the nested interconnect component between the inner and outer
partition of the nested read port data array

*[[renD ∧ Ci ,inner]; irenD↑; [¬ IR]; IR↑; IRv↑; irenD↓; R↓;
[¬renD]; IR↑; IR↓; IRv↓
]

Program F.13 HSE: a single bit of the data component of a data-independent control-
data join, with nested data

*[[WCi ,inner −→ [Wi]; IW ↑; 〈writeinner〉; iwv↓
[]WCi ,outer −→ [Wi]; 〈writeouter〉
];
wv↓;

IW ↓; iwv↑;
[¬Wi]; wv↑
]

Program F.14 HSE: the nested interconnect component between the inner and outer
partition of the nested write port array

*[[Di ∧ Ci ,inner]; ID↑; [¬ iwv]; wv↓;
ID↓; iwv↑
]

189

F.3.3 Nested Control Interconnect

The partial HSEs of the non-WAD nested control interconnect component are
described in Sections 9.4.3 and 9.4.5.

Program F.15 HSE: nested interconnect component between the inner and outer
partitions’ non-WAD read control propagation arrays

*[[renC ∧ IC v
i ∧ IC e

o]; irenC↑; [IC v
o]; IC e

i ↓;
[¬renC ∧ ¬IC e

o]; irenC↓; [¬IC v
i]; IC e

i ↑; [¬IC v
o]

]

Program F.16 HSE: nested interconnect component between the inner and outer
partitions’ non-WAD write control propagation arrays

*[[wen ∧ IWC v
i ∧ IWC e

o]; iwen↑; [IWC v
o]; IWC e

i ↓;
[¬wen ∧ ¬IWC e

o]; iwen↓; [¬IWC v
i]; IWC e

i ↑; [¬IWC v
o]

]

190

F.4 WAD Nested Core

The decompositions of the WAD nested core read and write ports are discussed in
Section 9.4.

F.4.1 Reading

The partial HSEs for the control components of the WAD nested read port are
discussed in Section 9.4.4.

Program F.17 HSE: nested interconnect component between the inner and outer
partitions’ WAD read control propagation arrays

*[[renC ∧ IRC v
i ∧ IRC e

o]; irenC↑;
[IRC f

o −→ RC f
o ↑, IRC e

i ↓[]IRC v
o −→ IRC e

i ↓];
[(¬renC ∧ ¬IRC e

o) ∨ IRC f
o]; irenC↓;

[¬IRC v
i]; IRC e

i ↑; [¬IRC v
o ∧ ¬IRC f

o]

]

Program F.18 HSE: WAD nested read handshake control (full buffer)

REG HSENread ,wad ,nested ,fullbuf ≡
*[[RC e

o ∧ ¬IRC f
o]; renC↑; [(RC f

o ∨ RC v
o) ∧ RC v

i ∧ renv ∧ Rv]; RC e
i ↓;

[RC f
o ∨ ¬RC e

o]; renC↓; (RC f
o ↓, ([¬RC v

i ∧ ¬renv]; RC e
i ↑)); [¬RC v

o]

]

Program F.19 HSE: WAD nested read handshake control (full-buffered propagation,
half-buffered termination)

REG HSENread ,wad ,nested ,fullbuf ≡
*[[RC e

o ∧ ¬IRC f
o]; renC↑; [(RC f

o ∨ RC v
o) ∧ RC v

i ∧ renv ∧ Rv]; RC e
i ↓;

[RC f
o ∨ ¬RC e

o]; renC↓; RC f
o ↓; [¬RC v

i ∧ ¬renv]; RC e
i ↑; [¬RC v

o]

]

191

F.4.2 Writing

The partial HSEs for the control components of the WAD nested write ports are
discussed in Sections 9.4.6 and 9.4.6. Note that the nested data connect for the
delimiter bit (HSE Program F.20) is slightly modified from the interconnect for
the non-delimiter bits (HSE Program F.14).

Program F.20 HSE: the nested interconnect component between the delimiter bit of
the inner and outer partition of the nested write port array

*[[dWi ∧ IWC v
i]; dIW ↑; [¬ iwv]; wv↓;

[¬IWC e
i]; dIW ↓; iwv↑

]

Program F.21 HSE: control nested interconnect between inner and outer partitions
of WAD nested write handshake control, unconditional outer write-enable

*[[dIW 0 −→ [IWC e
o ∧ wen]; iwen↑[]dIW 1 −→ skip];

[(dIW 1 ∨ IWC v
o) ∧ IWC v

i]; IWC e
i ↓;

[¬IWC e
o ∧ ¬wen]; iwen↓; [¬IWC v

i]; IWC e
i ↑; [¬IWC v

o]

]

Program F.22 HSE: control nested interconnect between inner and outer partitions
of WAD nested write handshake control, conditional outer write-enable

*[[dIW 0 −→ [IWC e
o ∧ wen]; iwen↑[]dIW 1 −→ skip];

[(dIW 1 ∨ IWC v
o) ∧ IWC v

i]; IWC e
i ↓;

[¬IWC e
o ∧ ¬wen]; iwen↓; [¬IWC v

i]; IWC e
i ↑; [¬IWC v

o]

]

Appendix G

Reset Convention

This appendix explains the reset signals that are found in the production rules for
the register file.

G.1 Global Reset Signals

The global reset convention we use for our circuits follows closely to those presented
in Nyström’s dissertation, which was an answer to the problems found in the
Caltech MiniMIPS’ reset convention [31, 34]. The MiniMIPS used only two reset
signals, Reset and Reset , to clear and initialize the state of the pipelines. They
allowed moments of interference with the assumption that interference would be
resolved in a limited amount of time. The major problem with that scheme was
the inevitable timing assumption about the delay from Reset↓ to Reset ↑ and their
respective rise and fall (slew) rates. For the same reasons given by Nyström, we
introduce new reset signals to avoid timing problems [34].

The reset convention we use occurs in multiple phases. The first step we take
is to cut-off critical production rules with series transistors gated by global reset
signals. In NFET pull-down rules, one uses sReset in series to cut-off, and in
PFET pull-up rules, one uses sReset in series to cut-off. (The s is for series.) In
our production rules, we forbid the use of sReset because of the negative impact on
performance of series PFETs. Thus, eliminating this type of reset signal restricts
the places where we may cut-off to only pull-down production rules. No matter
what the state of pipelines is in the entire asynchronous system, applying the series
cut-off reset will cause the system to halt in a limited amount of time. The longest
path between series cut-off resets characterizes the upper bound on the time it
takes to stabilizes to the halted state.

Assuming that all nodes with series cut-off resets are properly staticized, one
may safely apply parallel resets to force nodes to switch into certain states. We
use pReset↓ to set a node high, and pReset↑ to set a node low.1 (The p is for

1 With careful planning, we were able to entirely eliminate pReset from the core
production rule set, which left only two global reset signals to route in the core.

192

193

parallel.) The requirement is that before the parallel resets can be applied, that
the opposing transistor network is guaranteed to be off, either directly by the
series cut-off resets or by propagation. (A similar optimization may be used in
the staticizers to cut-off the opposing weak transistors.) The global parallel resets
force a set of nodes into a state that propagates throughout the system, which
eventually arrives at a known initial state. (This time may characterized by paths
between reset nodes.) In the initial state, the parallel resets may be de-asserted
leaving staticizers to hold the state of dynamic nodes.

Once the parallel resets are no longer driving, the final step in the reset pro-
tocol is to de assert the series cut-off resets, which allows the system to proceed.
With independently-driven global reset signals, the only timing assumptions that
enter into the reset protocol are the durations of each reset phase, which may be
(arbitrarily) generously long to guarantee safety and non-interference.

To summarize:

1. Assert series cut-off reset signals

2. Assert parallel reset signals to switch critical nodes

3. De-assert parallel reset signals

4. De-assert series cut-off reset signals

G.2 Handshake Protocol Reset State

This section addresses the question: where in the PCEVFB and PCEVHB reshuf-
flings’ HSEs is it best to reset? More specifically, what should the state of the
input acknowledge and internal state enable be? Since our sub-system does not
initialize with any tokens on start-up, the data outputs must be neutral on reset.

Our goal in choosing the handshake reset convention is to minimize the amount
of reset circuitry, especially in nodes along the critical path. Each series transis-
tor added weakens the driving strength of a transistor stack, and each parallel
transistor added contributes the the parasitic capacitance on a node. We evaluate
our choices, based on the state of the (active-low) acknowledge signal and internal
state enable on reset.

Acknowledge low, enable low. Advantages: With the low internal enable
automatically forces the precharge stacks of the data rails to reset to neutral (low
output after the inverter), which makes data resetting very efficient and fast be-
cause the resetting of data does not ripple from pipeline stage to stage. The fact
that the acknowledgment and enable are the same sense eliminates the need for
opposing reset cut-offs on the path from acknowledgment to enable.2

2 This is true when the internal enable is two gate transitions after the acknowledg-
ments.

194

Disadvantages: The natural state of the (active-low) acknowledge is high, in-
dicating to the input-senders that this stage is ready to accept new input tokens.
One would need to force the acknowledge to be low, which implies additional series
gating in the opposing pull-up network. Since the acknowledgment path is likely
to be on the critical path of the handshake cycle time, we did not choose this
convention.

Acknowledge low, enable high. Advantages: None.
Disadvantages: (same as with enable low) In addition, one would lose the

advantage of not having to reset the output because the internal enable used for
the precharge is high. The fact that the acknowledgment is opposite in sense to
the enable means that cut-off and parallel resets are required in the internal enable
production rules. As we’ve seen in the production rule derivation for the read port,
the internal enables ren already have huge fanout to overcome. This is just a poor
choice.

Acknowledge high, enable low. Advantages: With enable low, no addi-
tional reset circuits are needed to reset data low. Acknowledge-high is the natural
state of the acknowledge when a stage is ready to accept new inputs.

Disadvantages: The fact that the acknowledgment is opposite in sense to the
enable means that cut-off and parallel resets are required in the internal enable
production rules.

Acknowledge high, enable high. Advantages: (same as with previous case)
The fact that the acknowledgment and enable are the same sense eliminates the
need for opposing reset cut-offs on the path from acknowledgment to enable.

Disadvantages: With enable high, one needs reset circuits in the output of
the precharge data stages. However, that overhead can be minimized by cutting
off the pull-down of the feedback staticizer with sReset and resetting high with
a minimum-size pReset , resulting in low data on reset. However, each precharge
stage depends on the previous stage being reset, which creates a ripple-dependency
on the data reset, possibly prolonging the middle phase of resetting. Since the reset
time is not critical to the performance of our system, this is not an issue.

Conclusion: Choosing to reset with acknowledgment high and enable high re-
sulted in the least overhead for reset circuits. We have argued that the disadvan-
tages of this convention are far outweighed by its advantages. This convention
almost eliminates reset overhead from nodes that are likely to be on the criti-
cal path. We have strongly leveraged the transformation where reset signals may
be implemented in the staticizers to minimize the negative impact on important
signals.

It should be noted that our optimal choice is not necessarily the general optimal
choice. When choosing a reset convention, one must consider the chosen reshuffling,
and its implications on implementation at the circuit level.

Appendix H

Core PRS

This appendix contains the production rules for all variations of the register core.
The PRS presented here, however, do not correspond exactly to the circuits we
have laid out and simulated. These circuits given here and throughout the text are
presented for ease of understanding because they correspond precisely to the partial
handshaking expansions of the floor decompositions. The actual circuits resulted
from transformations that moved around completion logic to reduce fanout along
the critical path of the handshake, particularly in the acknowledgment generation.
These optimizations are described only in the technical report [11].

H.1 Register Cell Array

The register cell is illustrated in Figure 4.11.

Program H.1 PRS: core register cell, single ported

¬x 1 → x 0↑
¬x 0 → x 1↑
x 1 → x 0↓
x 0 → x 1↓
WCi ∧W 0 → x 1↓
WCi ∧W 1 → x 0↓
W 0 ∧ x 0 ∧WCi → wv↓
W 1 ∧ x 1 ∧WCi → wv↓
ren ∧ RCi ∧ x 0 → R0↓
ren ∧ RCi ∧ x 1 → R1↓

Program H.2 PRS: core register cell hard-wired to zero, single ported

(W 0 ∨W 1) ∧WC 0
i → wv↓

renD ∧ RC 0
i → R0↓

195

196

H.2 Data Nested Interconnect

PRS H.3 is illustrated in Figure 9.15, and PRS H.4 is illustrated in Figure 9.16.

Program H.3 PRS: delay-insensitive interface cell bewteen the data bits of inner and
outer banks of a nested register array, shown for a single read port
¬ pReset → IR0↑
¬ pReset → IR1↑
¬ pReset → irenD↑
IRC v

i ∧ renD ∧ IRv → irenD↓
¬ irenD → irenD↑
irenD → iren D↓
¬ IR0 ∧ ¬iren D → IR0↑
¬ IR1 ∧ ¬iren D → IR1↑
IR0 ∨ IR1 → IRv↓
¬ IRv → irenD↑
irenD → irenD↓
¬irenD → iren D↑
IR0 ∧ renD ∧ iren D → R0↓
IR1 ∧ renD ∧ iren D → R1↓
¬renD ∧ ¬irenD → IR0↑
¬renD ∧ ¬irenD → IR1↑
IR0 → IR0↓
IR1 → IR1↓
¬IR0 ∧ ¬IR1 → IRv↑

197

Program H.4 PRS: delay-insensitive interface cell bewteen the data bits of inner and
outer banks of a nested register array, shown for a single write port
¬ pReset → IW 0↑
¬ pReset → IW 1↑
W 0 ∧ wv ∧ IWC v

i → IW 0↓
W 1 ∧ wv ∧ IWC v

i → IW 1↓
¬ IW 0 → IW 0↑
¬ IW 1 → IW 1↑
¬ IW v → IW v↑
IW v → wv↓
¬ wv → IW 0↑
¬ wv → IW 1↑
IW 0 → IW 0↓
IW 1 → IW 1↓
¬IW 0 ∧ ¬IW 1 → IW v↑
IW v → IW v↓

Program H.5 PRS: delay-insensitive interface cell bewteen the delimiter bits of inner
and outer banks of a nested register array, used with conditional outer write-enable,
shown for a single write port
¬ pReset → dIW 0↑
¬ pReset → dIW 1↑
dW 0 ∧ wv ∧ dIWC v

i → dIW 0↓
dW 1 ∧ wv ∧ dIWC v

i → dIW 1↓
¬ dIW 0 → dIW 0↑
¬ dIW 1 → dIW 1↑
¬ dIW v → dIW v↑
dIW v → wv↓
¬ wv → dIW 0↑
¬ wv ∧ ¬IWC e

i → dIW 1↑
dIW 0 → dIW 0↓
dIW 1 → dIW 1↓
¬dIW 0 ∧ ¬dIW 1 → dIW v↑
dIW v → dIW v↓

198

Program H.6 PRS: delay-insensitive interface cell bewteen the delimiter bits of inner
and outer banks of a nested register array, used with unconditional outer write-enable,
shown for a single write port
¬ pReset → dIW 0↑
¬ pReset → dIW 1↑
dW 0 ∧ wv ∧ dIWC v

i → dIW 0↓
dW 1 ∧ wv ∧ dIWC v

i → dIW 1↓
¬ dIW 0 → dIW 0↑
¬ dIW 1 → dIW 1↑
¬ dIW v → dIW v↑
dIW v → wv↓
¬ wv ∧ ¬IWC e

i → dIW 0↑
¬ wv ∧ ¬IWC e

i → dIW 1↑
dIW 0 → dIW 0↓
dIW 1 → dIW 1↓
¬dIW 0 ∧ ¬dIW 1 → dIW v↑
dIW v → dIW v↓

199

H.3 Control Propagation Array

The unconditional read and write control propagators (for two ports) are illustrated
respectively in Figures 4.12 and 4.13. The WAD read and write control propagators
are illustrated respectively in Figures 5.10 and 5.11 (unconditional write-enable).

Program H.7 PRS: unconditional read control propagation with locking, for two ports
with p = 0, 1 (q = 1− p)
¬ pReset → RCo[p]↑
ren[p] ∧ WCo[p] ∧ WCo[q] ∧ RCi[p] → RCo[p]↓
¬ RCo[p] → RCo[p]↑
¬ren[p] → RCo[p]↑
RCo[p] → RCo[p]↓

Program H.8 PRS: unconditional write control propagation with locking, for two
ports with p = 0, 1 (q = 1− p)
¬ pReset → WCo[p]↑
wen[p] ∧ WCo[q] ∧ RCo[p] ∧ RCo[q] ∧WCi[p] → WCo[p]↓
¬ WCo[p] → WCo[p]↑
¬wen[p] → WCo[p]↑
WCo[p] → WCo[p]↓

Program H.9 PRS: unconditional read/write control propagation without locking (for
register 0), for a single port

¬ pReset → WC 0
o ↑

¬ pReset → RC 0
o ↑

ren ∧ RC 0
i → RC 0

o ↓
¬ RC 0

o → RC 0
o ↑

¬ren → RC 0
o ↑

RC 0
o → RC 0

o ↓
wen ∧WC 0

i → WC 0
o ↓

¬ WC 0
o → WC 0

o ↑
¬wen → WC 0

o ↑
WC 0

o → WC 0
o ↓

200

Program H.10 PRS: WAD conditional read control propagation with locking, for two
ports with p = 0, 1 (q = 1− p)
¬ pReset → RCo[p]↑
ren[p] ∧ WCo[p] ∧ WCo[q] ∧ RCi[p] ∧ dx 0 → RCo[p]↓
ren[p] ∧ RCi[p] ∧ dx 1 → RC f

o [p]↓
¬ RCo[p] → RCo[p]↑
¬ren[p] → RCo[p]↑
RCo[p] → RCo[p]↓

Program H.11 PRS: WAD conditional write control propagation with locking, and
unconditional write-enable wen, for two ports with p = 0, 1 (q = 1− p)
¬ pReset → WCo[p]↑
wen[p] ∧ WCo[q] ∧ RCo[p] ∧ RCo[q] ∧WCi[p] ∧ dW 0 → WCo[p]↓
wen[p] ∧WCi[p] ∧ dW 1 → WC f

o [p]↓
¬ WCo[p] → WCo[p]↑
¬wen[p] → WCo[p]↑
WCo[p] → WCo[p]↓

201

H.4 Control Nested Interconnect

The nested control interconnects for the non-WAD read and write ports are illus-
trated in Figures 9.20 and 9.22 respectively. The nested control interconnects for
the WAD read and write ports are illustrated in Figures 9.21 and 9.23 respectively.

Program H.12 PRS: delay-insensitive interface cell between inner and outer banks of
nested, unconditional read control propagation array, single port
¬ pReset → irenC↑
¬ pReset → IRC e

i ↑
irenC ∧ IRC v

o → IRC e
i ↓

¬IRC e
i ∧ ¬renC ∧ ¬IRC e

o → irenC↑
irenC → irenC↓
¬irenC ∧ ¬IRC v

i → IRC e
i ↑

IRC e
i ∧ IRC e

o ∧ renC ∧ IRC v
i → irenC↓

¬ irenC → irenC↑

Program H.13 PRS: delay-insensitive interface cell between inner and outer banks of
nested, unconditional write control propagation array, single port
¬ pReset → iwen↑
¬ pReset → IWC e

i ↑
wen ∧ IWC v

i ∧ IWC e
i ∧ IWC e

o → iwen↓
¬ iwen → iwen↑
iwen ∧ IWC v

o → IWC e
i ↓

¬wen ∧ ¬IWC e
i ∧ ¬IWC e

o → iwen↑
iwen → iwen↓
¬iwen ∧ ¬IWC v

i → IWC e
i ↑

202

Program H.14 PRS: delay-insensitive interface cell between inner and outer banks of
nested, WAD read control propagation array, single port
¬ pReset → irenC↑
¬ pReset → IRC f

o ↑
¬ pReset → IRC e

i ↑
¬ IRC f

o → IRC f
o ↑

IRC f
o → ircof ↓

renC ∧ IRC f
o ∧ irenC → RC f

o ↓
irenC ∧ (IRC v

o ∨ IRC f
o) → IRC e

i ↓
¬IRC e

i ∧ ((¬renC ∧ ¬IRC e
o) ∨ ¬ircof) → irenC↑

irenC → irenC↓
¬renC ∧ ¬irenC → IRC f

o ↑
IRC f

o → IRC f
o ↓

¬IRC f
o → ircof ↑

¬irenC ∧ ¬IRC v
i → IRC e

i ↑
IRC e

i ∧ IRC e
o ∧ renC ∧ IRC v

i → irenC↓
¬ irenC → irenC↑

Program H.15 PRS: delay-insensitive interface cell between inner and outer banks of
nested, WAD write control propagation array, with conditional outer write-enable, single
port
¬ pReset → iwen↑
¬ pReset → IWC e

i ↑
wen ∧ IWC v

i ∧ IWC e
i ∧ IWC e

o → iwen↓
¬ iwen → iwen↑
idW 1 ∨ (iwen ∧ IWC v

o) → IWC e
i ↓

¬wen ∧ ¬IWC e
i ∧ ¬IWC e

o → iwen↑
iwen → iwen↓
¬iwen ∧ ¬IWC v

i ∧ ¬idW 1 → IWC e
i ↑

Program H.16 PRS: delay-insensitive interface cell between inner and outer banks
of nested, WAD write control propagation array, with unconditional outer write-enable,
single port
¬ pReset → iwen↑
¬ pReset → IWC e

i ↑
wen ∧ IWC e

i ∧ IWC e
o ∧ dW .0 ∧ IWC v

i → iwen↓
¬ iwen → iwen↑
idW 1 ∨ (iwen ∧ IWC v

o) → IWC e
i ↓

¬wen ∧ ¬IWC e
i ∧ ¬IWC e

o → iwen↑
iwen → iwen↓
¬iwen ∧ ¬IWC v

i ∧ ¬idW .1 → IWC e
i ↑

203

Program H.17 PRS: delay-insensitive interface cell between inner and outer banks
of nested, WAD write control propagation array, with unconditional outer write-enable,
single port
¬ pReset → iwen↑
¬ pReset → IWC e

i ↑
wen ∧ IWC e

i ∧ IWC e
o ∧ idW .0 → iwen↓

¬ iwen → iwen↑
idW 1 ∨ (iwen ∧ IWC v

o) → IWC e
i ↓

¬wen ∧ ¬IWC e
i ∧ ¬IWC e

o → iwen↑
iwen → iwen↓
¬iwen ∧ ¬IWC v

i ∧ ¬idW .1 ∧ ¬idW .0 → IWC e
i ↑

204

H.5 Data Interface Array

The non-nested data interface circuits are illustrated in Figure 4.14, and the nested
version is illustrated in Figure 9.17.

Program H.18 PRS: read/write data interface cell for a single port of a bit line

¬ pReset → R0↑
¬ pReset → R1↑
R0 → R0↓
R1 → R1↓

R0 ∨ R1 → rv↓
¬RC e

i ∧ ¬Re → renD↑
renD → renD↓
¬renD → R0↑
¬renD → R1↑
¬ R0 → R0↑
¬ R1 → R1↑
¬R0 ∧ ¬R1 → rv↑
RC e

i ∧ Re → renD↓
¬ renD → renD↑
¬W 0 ∧ ¬W 1 → wv↑

205

Program H.19 PRS: read/write data interface cell for a single port of a nested bit
line
¬ pReset → R0↑
¬ pReset → R1↑
R0 → R0↓
R1 → R1↓

R0 ∨ R1 → rv↓
¬RC e

i ∧ ¬Re → renD↑
renD → renD↓
¬renD → R0↑
¬renD → R1↑
¬ R0 → R0↑
¬ R1 → R1↑
¬R0 ∧ ¬R1 → rv↑
RC e

i ∧ Re ∧ IRv → renD↓
¬ renD → renD↑
¬W 0 ∧ ¬W 1 ∧ ¬IW v → wv↑

206

H.6 Read Handshake Control

H.6.1 Unconditional Read Handshake Control

The half-buffer unconditional read handshake control is illustrated in Figure 4.16,
and the full-buffer version is illustrated in Figure 4.15.

Note: all these handshake control production rules may are reused for the
nested, non-WAD variations without modification!

Program H.20 PRS: read handshake control for unconditional control propagation,
PCEVFB reshuffling
¬ pReset → RC e

i ↑
renv ∧ RC v

i ∧ RC v
o ∧ Rv → RC e

i ↓
¬RC e

i ∧ ¬RC e
o → renC↑

renC → renC↓
¬renv ∧ ¬RC v

i → RC e
i ↑

RC e
i ∧ RC e

o → renC↓
¬ renC → renC↑

Program H.21 PRS: read handshake control for unconditional control propagation,
PCEVHB reshuffling
¬ pReset → RC e

i ↑
renv ∧ RC v

i ∧ RC v
o ∧ Rv → RC e

i ↓
¬RC e

i ∧ ¬RC e
o → renC↑

renC → renC↓
¬renv ∧ ¬RC v

i ∧ ¬RC v
o → RC e

i ↑
RC e

i ∧ RC e
o → renC↓

¬ renC → renC↑

207

H.6.2 WAD Read Handshake Control

The half-buffer WAD read handshake control is illustrated in Figure 5.13, and the
full-buffer version is illustrated in Figure 5.12.

Program H.22 PRS: read handshake control for WAD conditional control propagation,
PCEVFB reshuffling
¬ pReset → RC e

i ↑
¬ pReset → RC f

o ↑
¬ RC f

o → RC f
o ↑

renv ∧ RC v
i ∧ Rv ∧ (RC v

o ∨ RC f
o) → RC e

i ↓
¬RC e

i ∧ (¬RC e
o ∨ ¬ RC f

o) → renC↑
renC → renC↓
¬renC → RC f

o ↑
RC f

o → RC f
o ↓

¬renv ∧ ¬RC v
i ∧ ¬RC f

o → RC e
i ↑

RC e
i ∧ RC e

o → renC↓
¬ renC → renC↑

Program H.23 PRS: read handshake control for WAD conditional control propagation,
PCEVHB reshuffling
¬ pReset → RC e

i ↑
¬ pReset → RC f

o ↑
¬ RC f

o → RC f
o ↑

renv ∧ RC v
i ∧ Rv ∧ (RC v

o ∨ RC f
o) → RC e

i ↓
¬RC e

i ∧ (¬RC e
o ∨ ¬ RC f

o) → renC↑
renC → renC↓
¬renC → RC f

o ↑
RC f

o → RC f
o ↓

¬renv ∧ ¬RC v
i ∧ ¬RC f

o ∧ ¬RC v
o → RC e

i ↑
RC e

i ∧ RC e
o → renC↓

¬ renC → renC↑

208

H.6.3 Nested WAD Read Handshake Control

The half-buffer WAD nested read handshake control is illustrated in Figure 9.19,
and the full-buffer version is illustrated in Figure 9.18.

Program H.24 PRS: read handshake control for nested, WAD conditional control
propagation, PCEVFB reshuffling
¬ pReset → RC e

i ↑
¬ pReset → RC f

o ↑
¬ RC f

o → RC f
o ↑

renv ∧ RC v
i ∧ Rv ∧ (RC v

o ∨ RC f
o) → RC e

i ↓
¬RC e

i ∧ (¬RC e
o ∨ ¬ RC f

o) → renC↑
renC → renC↓
¬renC → RC f

o ↑
RC f

o → RC f
o ↓

¬renv ∧ ¬RC v
i ∧ ¬RC f

o → RC e
i ↑

RC e
i ∧ RC e

o ∧ ircof → renC↓
¬ renC → renC↑

Program H.25 PRS: read handshake control for nested, WAD conditional control
propagation, PCEVHB reshuffling
¬ pReset → RC e

i ↑
¬ pReset → RC f

o ↑
¬ RC f

o → RC f
o ↑

renv ∧ RC v
i ∧ Rv ∧ (RC v

o ∨ RC f
o) → RC e

i ↓
¬RC e

i ∧ (¬RC e
o ∨ ¬ RC f

o) → renC↑
renC → renC↓
¬renC → RC f

o ↑
RC f

o → RC f
o ↓

¬renv ∧ ¬RC v
i ∧ ¬RC f

o ∧ ¬RC v
o → RC e

i ↑
RC e

i ∧ RC e
o ∧ ircof → renC↓

¬ renC → renC↑

209

H.6.4 Read Handshake Control Termination

The read handshake control for the terminal block is independent of control-
buffering since there is no control output. The same production rules work for
the non-WAD and WAD, non-nested and nested variations.

Program H.26 PRS: read handshake control for the terminal block.

¬ pReset → RC e
i ↑

renv ∧ RC v
i ∧ Rv → RC e

i ↓
¬renv ∧ ¬RC v

i → RC e
i ↑

210

H.7 Write Handshake Control

H.7.1 Unconditional Write Handshake Control

The half-buffer unconditional write handshake control is illustrated in Figure 4.18,
and the full-buffer version is illustrated in Figure 4.17.

Note: all the following PRS can be used for the nested versions without modi-
fication!

Program H.27 PRS: write handshake control for unconditional control propagation,
PCEVFB reshuffling
¬ pReset → WC e

i ↑
wen ∧ wvc ∧WC v

i ∧WC v
o → WC e

i ↓
¬WC e

i ∧ ¬WC e
o → wen↑

wen → wen↓
¬wen ∧ ¬wvc ∧ ¬WC v

i → WC e
i ↑

WC e
o ∧WC e

i → wen↓
¬ wen → wen↑

Program H.28 PRS: write handshake control for unconditional control propagation,
PCEVHB reshuffling

wvc ∧WC v
i ∧WC v

o → WC e
i ↓

¬WC e
i ∧ ¬WC e

o → wen↑
wen → wen↓
¬wvc ∧ ¬WC v

i ∧ ¬WC v
o → WC e

i ↑
WC e

o ∧WC e
i → wen↓

¬ wen → wen↑

211

H.7.2 WAD Write Handshake Control, Unconditional En-
able

The half-buffer WAD write handshake control with unconditional write-enable is
illustrated in Figure 5.15, and the full-buffer version is illustrated in Figure 5.14.

Note: all the following PRS can be used for the nested versions without modi-
fication!

Program H.29 PRS: write handshake control for WAD control propagation, with
unconditional write-enable wen, PCEVFB reshuffling
¬ pReset → WC e

i ↑
¬ pReset → WC f

o ↑
wen ∧ dW 1 → WC f

o ↓
¬ WC f

o → WC f
o ↑

wen ∧WC v
i ∧ wvc ∧ (WC v

o ∨WC f
o) → WC e

i ↓
¬WC e

i ∧ (¬WC e
o ∨ ¬ WC f

o) → wen↑
wen → wen↓
¬wen → WC f

o ↑
WC f

o → WC f
o ↓

¬wen ∧ ¬WC v
i ∧ ¬wvc ∧ ¬WC f

o → WC e
i ↑

WC e
o ∧WC e

i → wen↓
¬ wen → wen↑

Program H.30 PRS: write handshake control for WAD control propagation, with
unconditional write-enable wen, PCEVHB reshuffling
¬ pReset → WC f

o ↑
wen ∧ dW 1 → WC f

o ↓
¬ WC f

o → WC f
o ↑

WC v
i ∧ wvc ∧ (WC v

o ∨WC f
o) → WC e

i ↓
¬WC e

i ∧ (¬WC e
o ∨ ¬ WC f

o) → wen↑
wen → wen↓
¬wen → WC f

o ↑
WC f

o → WC f
o ↓

¬WC v
i ∧ ¬wvc ∧ ¬WC v

o ∧ ¬WC f
o → WC e

i ↑
WC e

o ∧WC e
i → wen↓

¬ wen → wen↑

212

H.7.3 WAD Write Handshake Control, Conditional Enable

The half-buffer WAD write handshake control with conditional write-enable is
illustrated in Figure 5.17, and the full-buffer version is illustrated in Figure 5.16.

Note: all the following PRS can be used for the nested versions without modi-
fication!

Program H.31 PRS: write handshake control for WAD control propagation, with
conditional write-enable wen, PCEVFB reshuffling
¬ pReset → wen↑
WC e

o ∧WC e
i ∧ dW 0 → wen↓

¬ wen → wen↑
WC v

i ∧ wvc ∧ (wen ∧WC v
o ∨ dW 1) → WC e

i ↓
¬WC e

i ∧ ¬WC e
o → wen↑

wen → wen↓
¬wen ∧ ¬WC v

i ∧ ¬wvc → WC e
i ↑

Program H.32 PRS: write handshake control for WAD control propagation, with
conditional write-enable wen, PCEVHB reshuffling
¬ pReset → wen↑
WC e

o ∧WC e
i ∧ dW 0 → wen↓

¬ wen → wen↑
WC v

i → wciv ↓
¬ wvc ∧ ¬wciv → wvciv↑
wvciv ∧ (WC v

o ∨ dW 1) → WC e
i ↓

¬WC e
i ∧ ¬WC e

o → wen↑
wen → wen↓
¬WC v

i → wciv ↑
wvc ∧ wciv → wvciv↓
¬wvciv ∧ ¬WC v

o → WC e
i ↑

213

H.7.4 Write Handshake Control Termination

The write handshake control for the terminal block is independent of buffering
since there is no output. The same production rules work for both unconditional
and WAD, non-nested and nested variations.

Program H.33 PRS: write handshake control for control termination

wvc ∧WC v
i → WC e

i ↓
¬wvc ∧ ¬WC v

i → WC e
i ↑

Appendix I

Mine Eyes Have Seen The Glory

This appendix is intentionally left blank. Nobody likes references to Appendix “I”
anyways.

214

Appendix J

Big Honkin’ Tables

Table J.1 summarizes the symbols used in the tables throughout this appendix.
For double-row table entries without a separation line, the upper row contains
numbers for the faster of the non-uniform accesses and the lower row contains
numbers for the slower.

For non-uniform access comparisons and breakeven analysis in Tables J.11 and
J.22, widths 32a and 32n use width 32 as the baseline for comparison, and widths
16a and 16n use width 16 as the baseline for comparison. Breakeven probabilities
r̂ are computed as described in Section 8.1.

For a read operation, ‘latency’ is defined and measured as the delay from the
time when renD ∧ RCi becomes true to the time Ro↑ rises half-way between the
supply rails, which includes the falling transition time for the read bit line, Ro .
For a write operation, ‘latency’ is the delay from the write input condition to the
write-validity condition (per bit line), which is measured as the delay from the
time Wi ∧WCi is true to the time wv↓ falls half-way between the supply rails.

215

216

Table J.1: Data table symbols

type symbol definition

o R read port operation
(oper.) W write port operation

S standard or non-width-adaptive (read and write)
f W width-adaptive (read)

(format) Wu width-adaptive, unconditional write-enable (write)
Wc width-adaptive, conditional write-enable (write)
32 single bank of 32 registers, balanced completion tree
32a single bank of 32 registers, unbalanced completion tree

w 32n 16-reg. bank nested inside 16-reg. bank, unbalanced tree
(width) 16 single bank of 16 registers, balanced completion tree

16a single bank of 16 registers, unbalanced completion tree
16n 8-reg. bank nested inside 8-reg. bank, unbalanced tree

b H precharge enable-valid half-buffer (PCEVHB) reshuffling
(buf) F precharge enable-valid full-buffer (PCEVFB) reshuffling

τH , EH cycle time and energy of half-buffer variation
τF , EF cycle time and energy of full-buffer variation
τS, ES cycle time and energy of standard (non-WAD) variation
τW , EW cycle time and energy of WAD variation
lf , τf , Ef latency, cycle time, and energy of faster partition
ls, τs, Es latency, cycle time, and energy of slower partition
l0, τ0, E0 latency, cycle time, and energy of baseline (unpartitioned)

break-even probability distribution
r̂l, r̂τ , r̂E for non-uniform access registers

217

Table J.2: All non-WAD read port performance and energy results

tr./ cycle freq. latency en./cy. Eτ 2

o f w b
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

H 22 1.953 512.2 0.323 26.90 102.5
32

F 20 1.862 537.0 0.323 26.59 92.2
22 1.955 511.5 0.323 27.06 103.4

H
30 2.315 431.9 0.323 29.77 159.6

32a
20 1.862 537.0 0.323 26.74 92.7

F
28 2.079 480.9 0.323 28.50 123.2
22 2.128 470.0 0.216 20.86 94.4

H
46 4.247 235.4 1.308 37.51 676.6

32n
20 1.880 531.9 0.216 19.84 70.1

F
38 3.922 255.0 1.308 35.90 552.3

R S
H 22 1.821 549.1 0.222 15.92 52.8

16
F 20 1.698 588.8 0.222 15.78 45.5

18 1.809 552.7 0.222 15.60 51.1
H

22 1.949 513.2 0.222 16.31 61.9
16a

16 1.689 592.0 0.222 15.43 44.0
F

20 1.771 564.6 0.222 15.90 49.9
18 1.759 568.5 0.163 14.47 44.8

H
38 3.714 269.2 1.149 24.98 344.6

16n
16 1.630 613.5 0.163 14.09 37.4

F
32 3.103 322.3 1.149 23.25 223.9

218

Table J.3: All WAD read port performance and energy results

tr./ cycle freq. latency en./cy. Eτ 2

o f w b
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

H 22 2.149 465.4 0.323 34.10 157.5
32

F 20 2.014 496.4 0.323 33.18 134.6
22 2.151 464.9 0.323 34.16 158.1

H
30 2.557 391.1 0.323 37.67 246.3

32a
20 2.014 496.5 0.323 33.26 134.9

F
28 2.321 430.9 0.323 36.06 194.2
22 2.335 428.3 0.216 26.17 142.7

H
46 4.659 214.6 1.308 46.89 1017.9

32n
20 2.037 490.9 0.216 24.87 103.2

F
38 4.114 243.1 1.308 44.40 751.6

R W
H 22 2.025 493.8 0.222 19.88 81.6

16
F 20 1.872 534.3 0.222 19.61 68.7

18 1.981 504.8 0.222 19.29 75.7
H

22 2.179 458.8 0.222 20.25 96.2
16a

16 1.861 537.3 0.222 19.26 66.7
F

20 1.942 514.9 0.222 19.83 74.8
18 1.964 509.3 0.163 18.04 69.5

H
38 4.081 245.1 1.149 31.22 519.9

16n
16 1.802 554.8 0.163 17.66 57.4

F
32 3.498 285.9 1.149 29.52 361.2

219

Table J.4: Impact of chosen buffering on read port performance and energy

o f w τH/τF − 1 1− EF/EH
EHτ

2
H

EF τ
2
F
− 1

32 4.9% 1.1% 11.2%
5.0% 1.2% 11.5%

32a
11.3% 4.3% 29.5%
13.2% 4.9% 34.6%

32n
8.3% 4.3% 22.5%

R S
16 7.2% 0.9% 16.0%

7.1% 1.1% 16.0%
16a

10.0% 2.5% 24.1%
7.9% 2.6% 19.5%

16n
19.7% 6.9% 53.9%

32 6.7% 2.7% 17.0%
6.8% 2.7% 17.2%

32a
10.2% 4.3% 26.8%
14.6% 5.0% 38.3%

32n
13.2% 5.3% 35.4%

R W
16 8.2% 1.4% 18.7%

6.4% 0.2% 13.5%
16a

12.2% 2.0% 28.5%
8.9% 2.1% 21.3%

16n
16.7% 5.4% 43.9%

220

Table J.5: Impact of width-adaptivity on half-buffer read port performance and energy

o f w b τW/τS − 1 EW/ES − 1
EW τ2

W

ESτ
2
S
− 1

32 9.1% 26.8% 53.6%
9.1% 26.2% 52.8%

32a
9.5% 26.5% 54.3%
8.9% 25.5% 51.1%

32n
8.8% 25.0% 50.4%

R W
16

H
10.1% 24.9% 54.5%
8.7% 23.7% 48.2%

16a
10.6% 24.1% 55.3%
10.4% 24.7% 55.4%

16n
9.0% 25.0% 50.9%

Table J.6: Impact of width-adaptivity on full-buffer read port performance and energy

o f w b τW/τS − 1 EW/ES − 1
EW τ2

W

ESτ
2
S
− 1

32 7.6% 24.8% 46.0%
7.5% 24.4% 45.5%

32a
10.4% 26.6% 57.7%
7.7% 25.3% 47.1%

32n
4.7% 23.7% 36.1%

R W
16

F
9.3% 24.3% 51.0%
9.2% 24.8% 51.5%

16a
8.8% 24.7% 50.0%
9.6% 25.3% 53.2%

16n
11.3% 27.0% 61.4%

221

Table J.7: Impact of bank size on read port performance and energy

o f w b τ32/τ16 − 1 1− E16/E32
E32τ2

32

E16τ2
16
− 1

H 7.2% 40.8% 94.2%
16

F 9.6% 40.7% 102.7%
8.1% 42.3% 102.5%

H
18.8% 45.2% 157.7%

16a
10.2% 42.3% 110.6%

R S F
17.4% 44.2% 147.0%
21.0% 30.6% 110.9%

H
14.4% 33.4% 96.4%

16n
15.3% 29.0% 87.3%

F
26.4% 35.2% 146.7%

H 6.1% 41.7% 93.1%
16

F 7.6% 40.9% 95.9%
8.6% 43.5% 108.8%

H
17.3% 46.3% 156.1%

16a
8.2% 42.1% 102.2%

R W F
19.5% 45.0% 159.6%
18.9% 31.1% 105.1%

H
14.2% 33.4% 95.8%

16n
13.0% 29.0% 79.9%

F
17.6% 33.5% 108.1%

222

Table J.8: Impact of bank size on read latency

o w l16/l32

16,16a 0.686
R 16n 0.753

16n 0.878

Table J.9: Impact of nesting on read latency

o w lf/l0 ls/l0 r̂l

32n 0.668 4.043 90.2%
R

16n 0.733 5.180 94.0%

Table J.10: Impact of extending a bank with nesting on read port performance and
energy

o f b τ32n

τ16
− 1 l32n

l16
− 1 E32n

E16
− 1

H 16.8% 31.0%
S

F 10.7% 25.8%
R

H 15.3%
-2.6%

31.6%
W

F 8.8% 26.8%

223

Table J.11: Impact of non-uniform accesses on read port performance and energy

o f w b τf/τ0 τs/τ0 r̂τ Ef/E0 Es/E0 r̂E

H 1.001 1.186 100.0% 1.006 1.107 100.0%
32a

F 1.000 1.117 100.0% 1.006 1.072 100.0%
H 1.090 2.175 100.0% 0.775 1.394 63.7%

32n
F 1.009 2.106 100.0% 0.746 1.350 58.0%

R S
H 0.994 1.070 91.6% 0.980 1.024 55.0%

16a
F 0.995 1.043 88.9% 0.978 1.008 26.6%
H 0.966 2.040 96.8% 0.909 1.569 86.2%

16n
F 0.960 1.827 95.3% 0.893 1.474 81.6%

H 1.001 1.190 100.0% 1.002 1.105 100.0%
32a

F 1.000 1.152 100.0% 1.002 1.087 100.0%
H 1.087 2.168 100.0% 0.767 1.375 61.7%

32n
F 1.011 2.042 100.0% 0.749 1.338 57.5%

R W
H 0.978 1.076 77.7% 0.970 1.018 38.0%

16a
F 0.994 1.038 87.1% 0.982 1.011 38.2%
H 0.970 2.015 97.1% 0.907 1.570 86.0%

16n
F 0.963 1.869 95.9% 0.900 1.505 83.5%

224

Table J.12: All non-WAD write port performance and energy results

tr./ cycle freq. latency en./cy. Eτ 2

o f w b
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

H 22 2.488 402.0 0.528 27.81 172.1
32

F 20 2.444 409.2 0.528 27.45 163.9
22 2.488 402.0 0.528 27.95 173.0

H
30 2.484 402.6 0.528 29.20 180.2

32a
20 2.444 409.2 0.528 27.95 166.9

F
28 2.471 404.7 0.528 29.80 182.0
22 2.344 426.7 0.432 16.32 89.7

H
46 3.960 252.5 1.095 29.86 468.3

32n
20 2.293 436.1 0.432 16.01 84.2

F
38 3.647 274.2 1.095 28.60 380.3

W S
H 22 2.179 458.9 0.417 11.23 53.3

16
F 20 2.118 472.1 0.417 11.30 50.7

20 2.175 459.8 0.417 11.08 52.4
H

22 2.172 460.3 0.417 11.22 52.9
16a

20 2.116 472.5 0.417 10.78 48.3
F

20 2.156 463.8 0.417 11.15 51.8
20 2.136 468.1 0.375 10.71 48.9

H
36 3.583 279.1 0.963 19.48 250.0

16n
20 2.079 481.0 0.375 10.49 45.3

F
30 2.964 337.4 0.963 17.68 155.3

225

Table J.13: All WAD-uwen write port performance and energy results

tr./ cycle freq. latency en./cy. Eτ 2

o f w b
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

H 22 2.601 384.5 0.528 35.07 237.3
32

F 20 2.604 384.0 0.528 34.90 236.7
22 2.602 384.3 0.528 34.64 234.5

H
30 2.637 379.2 0.528 36.41 253.2

32a
20 2.604 384.0 0.528 34.80 236.0

F
28 2.648 377.7 0.528 36.39 255.1
22 2.453 407.6 0.432 19.35 116.5

H
46 4.117 242.9 1.095 36.04 610.8

32n
20 2.456 407.2 0.432 19.45 117.3

F
38 3.801 263.1 1.095 34.11 492.7

W Wu
H 22 2.288 437.0 0.417 13.17 69.0

16
F 20 2.281 438.5 0.417 13.46 70.0

20 2.283 438.0 0.417 13.12 68.4
H

22 2.310 433.0 0.417 13.17 70.3
16a

20 2.278 438.9 0.417 13.36 69.3
F

20 2.319 431.2 0.417 13.30 71.5
20 2.245 445.4 0.375 12.60 63.5

H
36 3.740 267.4 0.963 22.82 319.2

16n
20 2.238 446.9 0.375 12.54 62.8

F
30 3.211 311.5 0.963 21.18 218.3

226

Table J.14: All WAD-cwen write port performance and energy results

tr./ cycle freq. latency en./cy. Eτ 2

o f w b
cycle (ns) (MHz) (ns) (pJ) (10−30Js2)

H 24 2.556 391.3 0.528 34.40 224.7
32

F 22 2.636 379.4 0.528 36.04 250.4
24 2.558 391.0 0.528 34.16 223.5

H
32 2.655 376.6 0.528 36.20 255.2

32a
22 2.632 380.0 0.528 34.87 241.5

F
30 2.712 368.7 0.528 36.52 268.6
24 2.403 416.2 0.432 19.06 110.0

H
46 4.052 246.8 1.095 35.50 582.8

32n
22 2.486 402.2 0.432 19.43 120.1

F
38 3.831 261.0 1.095 34.25 502.6

W Wc
H 24 2.243 445.9 0.417 13.03 65.5

16
F 22 2.320 431.1 0.417 13.51 72.7

22 2.242 446.1 0.417 12.63 63.5
H

24 2.299 434.9 0.417 13.07 69.1
16a

20 2.313 432.4 0.417 12.81 68.5
F

22 2.383 419.6 0.417 13.21 75.0
22 2.197 455.2 0.375 12.41 59.9

H
36 3.656 273.5 0.963 22.67 303.0

16n
20 2.268 440.9 0.375 12.60 64.8

F
30 3.203 312.2 0.963 21.20 217.5

227

Table J.15: Impact of chosen buffering on write port performance and energy

o f w τH/τF − 1 1− EF/EH
EHτ

2
H

EF τ
2
F
− 1

32 1.8% 1.3% 5.0%
1.8% -0.0% 3.6%

32a
0.5% -2.0% -1.0%
2.2% 2.0% 6.5%

32n
8.6% 4.2% 23.1%

W S
16 2.9% -0.6% 5.2%

2.8% 2.7% 8.6%
16a

0.8% 0.6% 2.1%
2.8% 2.0% 7.8%

16n
20.9% 9.2% 61.0%

32 -0.1% 0.5% 0.2%
-0.1% -0.5% -0.6%

32a
-0.4% 0.1% -0.7%
-0.1% -0.5% -0.7%

32n
8.3% 5.4% 24.0%

W Wu
16 0.3% -2.2% -1.5%

0.2% -1.8% -1.4%
16a

-0.4% -0.9% -1.7%
0.3% 0.5% 1.2%

16n
16.5% 7.2% 46.2%

32 -3.0% -4.8% -10.3%
-2.8% -2.1% -7.4%

32a
-2.1% -0.9% -5.0%
-3.4% -1.9% -8.4%

32n
5.8% 3.5% 15.9%

W Wc
16 -3.3% -3.7% -9.9%

-3.1% -1.4% -7.4%
16a

-3.5% -1.0% -7.9%
-3.1% -1.5% -7.6%

16n
14.1% 6.4% 39.3%

228

Table J.16: Impact of width-adaptivity on half-buffer write port performance and energy

o f w b τW/τS − 1 EW/ES − 1
EW τ2

W

ESτ
2
S
− 1

Wu 4.3% 26.1% 37.9%
Wc

32
2.7% 23.7% 30.5%
4.4% 24.0% 35.6%

Wu
5.8% 24.7% 40.5%

32a
2.7% 22.2% 29.2%

Wc
6.4% 24.0% 41.6%
4.5% 18.6% 29.9%

Wu
3.8% 20.7% 30.4%

32n
2.5% 16.8% 22.7%

Wc
2.3% 18.9% 24.5%

W
Wu

H
4.8% 17.2% 29.3%

Wc
16

2.8% 16.0% 22.9%
4.7% 18.4% 30.5%

Wu
5.9% 17.5% 32.8%

16a
3.0% 14.0% 21.1%

Wc
5.5% 16.5% 30.5%
4.9% 17.7% 30.0%

Wu
4.2% 17.2% 27.7%

16n
2.8% 16.0% 22.6%

Wc
2.0% 16.4% 21.2%

229

Table J.17: Impact of width-adaptivity on full-buffer write port performance and energy

o f w b τW/τS − 1 EW/ES − 1
EW τ2

W

ESτ
2
S
− 1

Wu 6.2% 27.1% 44.4%
Wc

32
7.3% 31.3% 52.8%
6.2% 24.5% 41.4%

Wu
6.7% 22.1% 40.2%

32a
7.1% 24.7% 44.7%

Wc
8.9% 22.5% 47.6%
6.6% 21.5% 39.4%

Wu
4.1% 19.2% 29.5%

32n
7.8% 21.4% 42.7%

Wc
4.8% 19.7% 32.2%

W
Wu

F
7.1% 19.1% 38.1%

Wc
16

8.7% 19.6% 43.4%
7.1% 23.9% 43.6%

Wu
7.0% 19.3% 37.9%

16a
8.5% 18.9% 42.0%

Wc
9.5% 18.5% 44.8%
7.1% 19.5% 38.5%

Wu
7.7% 19.8% 40.6%

16n
8.3% 20.2% 43.1%

Wc
7.5% 20.0% 40.1%

230

Table J.18: Impact of bank size on write port performance and energy

o f w b τ32/τ16 − 1 1− E16/E32
E32τ2

32

E16τ2
16
− 1

H 14.2% 59.6% 222.6%
16

F 15.4% 58.8% 223.4%
14.4% 60.4% 230.0%

H
14.3% 61.6% 240.4%

16a
15.5% 61.4% 245.8%

W S F
14.6% 62.6% 251.1%
9.7% 34.4% 83.5%

H
10.5% 34.8% 87.3%

16n
10.3% 34.5% 85.7%

F
23.0% 38.2% 144.9%

H 13.7% 62.5% 244.1%
16

F 14.2% 61.4% 238.3%
13.9% 62.1% 242.9%

H
14.2% 63.8% 260.3%

16a
14.3% 61.6% 240.4%

W Wu F
14.2% 63.5% 256.8%
9.3% 34.9% 83.3%

H
10.1% 36.7% 91.4%

16n
9.7% 35.5% 86.9%

F
18.4% 37.9% 125.7%

H 14.0% 62.1% 242.8%
16

F 13.6% 62.5% 244.4%
14.1% 63.0% 252.1%

H
15.5% 63.9% 269.3%

16a
13.8% 63.3% 252.3%

W Wc F
13.8% 63.8% 258.0%
9.4% 34.9% 83.6%

H
10.8% 36.2% 92.4%

16n
9.6% 35.1% 85.3%

F
19.6% 38.1% 131.1%

231

Table J.19: Impact of bank size on write latency

o w l16/l32

16,16a 0.790
W 16n 0.868

16n 0.880

Table J.20: Impact of nesting on write latency

o w lf/l0 ls/l0 r̂l

32n 0.818 2.074 85.5%
W

16n 0.899 2.310 92.8%

Table J.21: Impact of extending a bank with nesting on write port performance and
energy

o f b τ32n

τ16
− 1 l32n

l16
− 1 E32n

E16
− 1

H 7.5% 45.3%
S

F 8.3% 41.7%
H 7.2% 47.0%

W Wu
F 7.7%

3.6%
44.6%

H 7.1% 46.3%
Wc

F 7.2% 43.8%

232

Table J.22: Impact of non-uniform accesses on write port performance and energy

o f w b τf/τ0 τs/τ0 r̂τ Ef/E0 Es/E0 r̂E

H 1.000 0.998 0.0% 1.005 1.050 100.0%
32a

F 1.000 1.011 99.2% 1.018 1.086 100.0%
H 0.942 1.592 91.1% 0.587 1.074 15.2%

32n
F 0.938 1.492 88.9% 0.583 1.042 9.2%

W S
H 0.998 0.997 0.0% 0.986 0.998 0.0%

16a
F 0.999 1.018 95.7% 0.954 0.987 0.0%
H 0.980 1.644 97.0% 0.953 1.734 94.0%

16n
F 0.981 1.399 95.6% 0.928 1.565 88.7%

H 1.000 1.014 100.0% 0.988 1.038 75.6%
32a

F 1.000 1.017 99.0% 0.997 1.043 93.7%
H 0.943 1.583 91.1% 0.552 1.027 5.8%

32n
F 0.943 1.459 88.9% 0.557 0.977 0.0%

W Wu
H 0.998 1.009 81.1% 0.996 1.000 9.0%

16a
F 0.999 1.017 94.4% 0.993 0.988 0.0%
H 0.981 1.634 97.1% 0.957 1.733 94.5%

16n
F 0.981 1.408 95.6% 0.932 1.574 89.4%

H 1.001 1.039 100.0% 0.993 1.052 88.2%
32a

F 0.998 1.029 94.6% 0.967 1.013 28.6%
H 0.940 1.585 90.7% 0.554 1.032 6.7%

32n
F 0.943 1.453 88.9% 0.539 0.950 0.0%

W Wc
H 1.000 1.025 98.1% 0.970 1.003 9.2%

16a
F 0.997 1.027 90.3% 0.948 0.978 0.0%
H 0.980 1.630 96.9% 0.953 1.739 94.0%

16n
F 0.978 1.381 94.5% 0.933 1.569 89.4%

Appendix K

Top Ten Lists

The Top 10 Signs That You Should Stop Writing the Master’s Thesis

10. You get so bored of writing, that you start adding Top 10 lists to the ap-
pendix.

9. You actually find the lists funny.

8. None of your peers has ever written a PhD dissertation as long.

7. You need to rent a cart to deliver copies of the thesis to your committee
members.

6. You start hoarding and concealing reams of paper for “the big printing day.”

5. Your desk creaks and sags from its sheer weight.

4. Your committee members give you feedback on only the abstract.

3. The thesis advisor mutters something about binding an encyclopedia in
twenty volumes.

2. Your wife is pregnant and asks when you’re going to graduate and get a real
job.

1. ERROR: TeX capacity exceeded. Out of main memory.

PDF output incomplete.

233

Bibliography

[1] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H. Albonesi. Re-
ducing the complexity of the register file in dynamic superscalar processors.
In Proceedings of the 34th International Symposium on Microarchitecture, De-
cember 2001.

[2] David Brooks and Margaret Martonosi. Dynamically exploiting narrow width
operands to improve processor power and performance. In Proceedings of the
5th IEEE Symposium on High-Performance Computer Architecture, January
1999.

[3] David Brooks and Margaret Martonosi. Value-based clock gating and opera-
tion packing: Dynamic strategies for improving processor power and perfor-
mance. ACM Transactions on Computer Systems, 18(2):89–126, May 2000.

[4] Ramon Canal, Antonio González, and James E. Smith. Very low power
pipelines using significance compression. In Proceedings of the 33rd Inter-
national Symposium on Microarchitecture, pages 181–190, Monterrey, CA,
December 2000.

[5] Andrea Capitanio, Nikil Dutt, and Alexandru Nicolau. Partitioned register
files for VLIWs: An architectural framework for multiple-instruction-issue
processors. In Proceedings of the 25th International Symposium on Microar-
chitecture, pages 292–300, December 1992.

[6] J. W. Chung, D. Kao, C. Cheng, and T. Lin. Optimization of power dissipation
and skew sensitivity in clock buffer synthesis. In Proceedings of International
Symposium on Low Power Electronics and Design (ISLPED ’95), pages 179–
184, Dana Point, CA, 1995.

[7] Keith D. Cooper and Timothy J. Harvey. Compiler-controlled memory. In
Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 2–11, San Jose, CA,
October 1998.

[8] José-Lorenzo Cruz, Antonio González, Mateo Valero, and Nigel P. Topham.
Multiple-banked register file architectures. In Proceedings of the 27th Annual

234

235

International Symposium on Computer Architecture, pages 316–325, Vancou-
ver, Canada, June 2000.

[9] Uri Cummings, Andrew Lines, and Alain Martin. An asynchronous pipelined
lattice structure filter. In Proceedings of the 1st Annual International Sym-
posium on Advanced Research in Asynchronous Circuits and Systems, pages
126–133, November 1994.

[10] Virantha N. Ekanayake. Asynchronous memories. Master’s thesis, Cornell
University, 2002.

[11] David Fang. Detailed decompositions of asynchronous register files. Technical
Report CSL-TR-2003-1037, Cornell University, December 2003.

[12] Keith I. Farkas, Norman P. Jouppi, and Paul Chow. Register file design
considerations in dynamically scheduled processors. In Proceedings of the
2nd IEEE Symposium on High-Performance Computer Architecture, February
1996.

[13] S. B. Furber, J. D. Garside, and D. A. Gilbert. AMULET3: A high-
performance self-timed ARM microprocessor. In Proceedings of the 1998
International Conference on Computer Design, pages 247–252, Austin, TX,
October 1998.

[14] S. B. Furber, J. D. Garside, S. Temple, P. Day, and N. C. Paver. AMULET2e:
An asynchronous embedded controller. In Proceedings of the 3rd Annual Inter-
national Symposium on Asynchronous Circuits and Systems, pages 290–299,
April 1997.

[15] Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson. Power considera-
tions in the design of the Alpha 21264 microprocessor. In Proceedings of the
35th Design Automation Conference (DAC ’98), San Francisco, CA, 1998.

[16] D. Harris. Skew-Tolerant Circuit Design. Morgan Kaufmann, 2001.

[17] C. Anthony R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978.

[18] M. Johnson. Superscalar Microprocessor Design. Prentice-Hall, Englewood
Cliffs, 1991.

[19] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.

[20] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24–36,
March/April 1999.

236

[21] M. Lewis and L. Brackenbury. Exploiting typical DSP access patterns for
a low power multiported register bank. In Proceedings of the 7th Annual
International Symposium on Asynchronous Circuits and Systems, Salt Lake
City, UT, March 2001.

[22] Hai Li, Yiran Chen, T. N. Vijaykumar, and Kaushik Roy. Deterministic
clock gating for microprocessor power reduction. In Proceedings of the 9th
IEEE Symposium on High-Performance Computer Architecture, Anaheim,
CA, February 2003.

[23] Andrew M. Lines. Pipelined asynchronous circuits. Master’s thesis, California
Institute of Technology, 1995.

[24] Rajit Manohar. An analysis of reshuffled handshaking expansions. In Pro-
ceedings of the 7th Annual International Symposium on Asynchronous Circuits
and Systems, Salt Lake City, Utah, March 2001.

[25] Rajit Manohar. Width-adaptive data word architectures. In Proceedings of
the 19th Conference on Advanced Research in VLSI, Salt Lake City, Utah,
March 2001.

[26] Rajit Manohar, Tak-Kwan Lee, , and Alain J. Martin. Projection: A syn-
thesis technique for concurrent systems. In Proceedings of the 5th Annual
International Symposium on Asynchronous Circuits and Systems, pages 125–
134, Barcelona, Spain, April 1999.

[27] Rajit Manohar and Alain J. Martin. Pipelined mutual exclusion and the
design of an asynchronous microprocessor. Technical Report CSL-TR-2001-
1017, Cornell Computer Systems Lab, November 2001.

[28] Rajit Manohar, Mika Nyström, and Alain J. Martin. Precise exceptions in
asynchronous processors. In Proceedings of the 19th Conference on Advanced
Research in VLSI, Salt Lake City, Utah, March 2001.

[29] Alain J. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed Computing, 1(4), 1986.

[30] Alain J. Martin. The limitations to delay-insensitivity in asynchronous cir-
cuits. In William J. Dally, editor, Proceedings of the 6th Conference on Ad-
vanced Research in VLSI, pages 263–278. MIT Press, 1990.

[31] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nyström, Paul Penzes,
Robert Southworth, Uri V. Cummings, and Tak Kwan Lee. The design of
an asynchronous MIPS R3000. In Proceedings of the 17th Conference on
Advanced Research in VLSI, September 1997.

237

[32] Alain J. Martin, Mika Nyström, Paul Penzes, and Catherine Wong. Speed and
energy performance of an asynchronous MIPS R3000 microprocessor. Tech-
nical Report CaltechCSTR:2001.012, Caltech Computer Science Department,
September 2001.

[33] José Mart́ınez, Jose Renau, Michael C. Huang, Milos Prvulovic, and Josep
Torellas. Cherry: Checkpointed early resource recycling in out-of-order mi-
croprocessors. In Proceedings of the 35th International Symposium on Mi-
croarchitecture, Istanbul, Turkey, November 2002.

[34] Mika Nyström. Asynchronous Pulse Logic. PhD thesis, California Institute of
Technology, May 2001.

[35] Recep O. Ozdag and Peter A. Beerel. High-speed QDI asynchronous pipelines.
In Proceedings of the 7th Annual International Symposium on Asynchronous
Circuits and Systems, pages 13–22, Manchester, UK, April 2002.

[36] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. Complexity ef-
fective superscalar processors. In M. Hill, N. Jouppi, and G. Sohi, editors,
Proceedings of the 24th Annual International Symposium on Computer Archi-
tecture, pages 206–218, June 1997.

[37] D. B. Papworth. Tuning the Pentium Pro microarchitecture. IEEE Micro,
pages 8–15, April 1996.

[38] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, second edition, 1996.

[39] N. Paver, P. Day, S. B. Furber, J. D. Garside, and J.V. Woods. Register
locking in an asynchronous microprocessor. In Proceedings of the 1992 In-
ternational Conference on Computer Design, pages 351–355, Boston, MA,
October 1992.

[40] A. Podlensky, G. Kristovsky, and A. Malshin. Multiport register file memory
cell configuration for read operation. U.S. Patent 5,657,291, Sun Microsys-
tems, Inc., Mountain View, CA, August 1997.

[41] M. Renaudin, P. Vivet, and F. Robin. ASPRO-216: a standard-cell QDI
16-bit RISC asynchronous processor. In Proceedings of the 4th Annual Inter-
national Symposium on Asynchronous Circuits and Systems, San Diego, CA,
March/April 1998.

[42] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi, and J. Owens. Reg-
ister organization for media processing. In Proceedings of the 6th IEEE Sym-
posium on High-Performance Computer Architecture, pages 375–386, January
2000.

238

[43] Richard M. Russell. The Cray-1 computer system. Communications of the
ACM, 21(1):63–72, 1978.

[44] Richard M. Russell. The Cray-1 computer system. In Mark D. Hill, Norman P.
Jouppi, and Gurindar S. Sohi, editors, Readings in Computer Architecture,
pages 40–49. Morgan Kaufmann, 2000.

[45] S. P. Song, M. Denman, and J. Chang. The PowerPC 604 RISC microproces-
sor. IEEE Micro, pages 8–17, October 1994.

[46] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–
738, 1989.

[47] John A. Swenson and Yale N. Patt. Hierarchical register for scientific comput-
ing. In Proceedings of the 2nd International Conference on Supercomputing,
pages 346–353, Saint Malo, France, 1988.

[48] Akihiro Takamura, Masashi Kuwako, Masashi Imai, Taro Fujii, Motokazu
Ozawa, Izumi Fukasaku, Yoichiro Ueno, and Takashi Nanya. TITAC-2: A 32-
bit asynchronous microprocessor based on scalable-delay-insensitive model. In
Proceedings of the 1997 International Conference on Computer Design, pages
288–294, October 1997.

[49] John Teifel, David Fang, David Biermann, Clinton Kelly IV, and Rajit
Manohar. Energy-efficient pipelines. In Proceedings of the 8th Annual In-
ternational Symposium on Asynchronous Circuits and Systems, Manchester,
UK, April 2002.

[50] Jessica Hui-Chun Tseng. Energy-efficient register file design. Master’s thesis,
MIT, 1999.

[51] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L.
Stamm. Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In Proceedings of the 23rd Annual In-
ternational Symposium on Computer Architecture, pages 191–202, May 1996.

[52] Steven Wallace and Nader Begherzadeh. A scalable register file architec-
ture for dynamically scheduled processors. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques ’96, pages
179–184, Boston, MA, October 1996.

[53] T. E. Williams. Self-Timed Rings and their Application to Division. PhD
thesis, Stanford University, May 1991.

[54] Anthony J. Winstanley, Aurelien Garivier, and Mark R. Greenstreet. An
event spacing experiment. In Proceedings of the 8th Annual International
Symposium on Asynchronous Circuits and Systems, pages 47–56, Manchester,
UK, April 2002.

239

[55] K. C. Yeager. MIPS R10000 superscalar microprocessor. IEEE Micro, pages
28–40, April 1995.

[56] Javier Zalamea, Josep Llosa, Eduard Ayguadé, and Mateo Valero. Two-level
hierarchical register file organization for VLIW processors. In Proceedings
of the 33rd International Symposium on Microarchitecture, pages 137–146,
Monterrey, CA, December 2000.

[57] V. Zyuban and P. Kogge. The energy complexity of register files. Technical
Report 97-20, Notre Dame CSE, December 1997.

[58] V. Zyuban and P. Kogge. The energy complexity of register files. In Pro-
ceedings of International Symposium on Low Power Electronics and Design
(ISLPED ’98), pages 305–310, August 1998.

Index

AMULET1, 29
AMULET2, 29
AMULET3, 29
ARM, 29
ASPRO-216, 29

banking registers, 8, 56–147
bit-skewed, 29
block-skewed, 27, 32
branch misprediction, 7, 61, 105
breakeven probability, 96–102, 133, 134,

136, 138, 140, 141, 144
bypass complexity, 105
byte-parallel, 28
byte-skewed, 27

completion tree, 4, 24, 25, 29, 34, 37,
44, 48, 52, 54, 57, 61, 63, 75,
97–99, 102, 104, 107, 115, 118,
119, 121, 132, 134, 143, 146,
147

unbalancing, 94–103
constant response time (CRT), 30–32,

34, 35
CSP, 3

delay insensitive (DI), 2
dependence

flow, 28
depth-adaptive, 106
DRAM, 1, 148

floor decomposition, 5, 8, 41–52, 56,
64, 69, 110, 112–124, 126

handshaking expansion (HSE), 4, 35
template, 4, 5, 35, 36, 50, 69, 72,

109, 110, 113, 145

hazard
read-after-write (RAW), 28, 29
write-after-read (WAR), 28
write-after-write (WAW), 28

Hoare, 3

instruction-level parallelism (ILP), 1,
57, 90, 104, 106

instruction-set architecture (ISA), 1,
106, 148

interconnect
nested, 112, 133–137, 144, 146

read control, 118–120, 128, 130
read data, 115, 116, 125
write control, 121, 123, 124, 127,

130, 131
write data, 107, 116–118, 123,

126
wiring complexity, 1, 64, 105, 106,

143, 144, 146
isochronic fork, 2

latency, 61
read, 61, 134, 143, 147
vertical, 27, 52, 79
write, 61, 136, 137, 143

Manohar, Rajit, iii, v, 65, 66
Martin, Alain, iii, 10
Micropipelines, 29
MiniMIPS, Caltech, xxvi, 4, 8, 10, 12,

25, 29, 34, 51, 60, 86, 192
MIPS, 10, 11, 19, 29

R2000, 29
R3000, 10

multi-cycle register access, 7, 104–106,
148

240

241

multi-phase overlapping clock, 29

nesting registers, 104–144
non-uniform control completion, see

completion tree, unbalancing
non-uniform register access, see nest-

ing, registers

orthogonal pipeline, see two-dimensional
pipeline

out-of-order, 1, 29, 95

phase-locked loop (PLL), 2
pipeline locking, 28, 31
pipelined completion, 25, 29, 86
pipelined mutual exclusion, 29
Port Priority Selection (PPS), 90–93
precharge

enable-neutral
full-buffer (PCENFB), 36
half-buffer (PCENHB), 36

enable-valid
full-buffer (PCEVFB), 36
half-buffer (PCEVHB), 36

full-buffer (PCFB), 4, 5, 31, 35,
36

half-buffer (PCHB), 4–6, 31, 35,
36

projection, 13

quasi-delay insensitive (QDI), 2, 24,
25, 29, 35, 36, 52, 76, 125, 134,
143–147

read latency, see latency, read
register renaming, 1, 95, 148
reset convention, 192–194
retiming, 94, 105, 146, 148
RISC, 10, 86

scalable-delay insensitive (SDI), 2, 29
sequential specification, 10–13
simultaneous multi-threading (SMT),

106
speed insensitive (SI), 2
superscalar, 1, 57, 91, 93

Sutherland, Ivan, 29

timing assumption, 2, 46, 52, 54, 61,
125, 126, 134, 144, 147, 148

TITAC-2, 29
two-dimensional pipeline, 25, 37

vertical latency, see latency, vertical
vertical pipeline, 1, 4, 7, 24–34, 56,

86, 106, 144
vertical skew, 28
very-long instruction word (VLIW), 105

width-adaptive datapath (WAD), 65–
85, 88–89, 100–102, 144

control nesting
read, 119
write, 122, 123

control propagation, 73, 108
read, 74, 111
write, 74, 111

wire delay, 2, 24, 25, 118
write latency, see latency, write
write-enable

conditional, 71–74, 77–79, 83, 84,
100–102, 111, 123, 124, 131

inner, 111, 122
outer, 111, 112, 122–125, 131,

132
unconditional, 71–75, 77–79, 81,

82, 84, 100, 101, 111, 123
outer, 111, 122, 123, 125, 130,

132, 140, 141

	Title Page
	Copyright Page
	Abstract
	Biography
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	List of Abbreviations
	Preface
	1 Introduction
	1.1 Background
	1.1.1 Asynchronous Circuit Synthesis
	1.1.2 Register File Models

	1.2 Overview

	2 Process Specification and Decomposition
	2.1 Sequential Specification
	2.2 Primary Decomposition
	2.3 Register Core
	2.4 Register Bypass
	2.5 Register Control
	2.6 Summary

	3 Vertical Pipelining
	3.1 Preliminary Concepts
	3.2 Related Work
	3.3 Pipeline Templates
	3.4 Pipelined Bypass
	3.5 Pipelined Mutual Exclusion: Core
	3.6 Register Zero
	3.7 Summary

	4 Core Base Design
	4.1 Template Handshaking Expansions
	4.1.1 Half-Buffer vs. Full-Buffer
	4.1.2 Core Read Port HSE
	4.1.3 Core Write Port HSE

	4.2 Floor Decomposition
	4.2.1 Decomposed Reading
	4.2.2 Decomposed Writing

	4.3 Production Rule Synthesis
	4.3.1 Core Register Cells
	4.3.2 Control Propagation
	4.3.3 Data Interface Cell
	4.3.4 Handshake Control
	4.3.5 Circuit Variations and Optimizations

	4.4 Banking
	4.4.1 Related Work
	4.4.2 Core Banking
	4.4.3 Bypass Banking
	4.4.4 Control Modifications

	4.5 Results
	4.5.1 Reading
	4.5.2 Writing

	4.6 Summary

	5 Width Adaptivity
	5.1 Related Work
	5.2 WAD Encoding
	5.3 CHP Transformations
	5.3.1 Bypass
	5.3.2 Core

	5.4 Template Handshaking Expansions
	5.4.1 Core Read Port HSE
	5.4.2 Core Write Port HSE
	5.4.3 HSE Summary

	5.5 Width-Adaptive Production Rules
	5.5.1 WAD Control Propagation
	5.5.2 WAD Read Handshake Control
	5.5.3 WAD Write Handshake Control
	5.5.4 PRS Comparison of WAD Write Ports

	5.6 Results
	5.6.1 Area
	5.6.2 Reading
	5.6.3 Writing, Unconditional Write-Enable
	5.6.4 Writing, Conditional Write-Enable

	5.7 Summary

	6 Register Zero
	6.1 Related Work
	6.2 Reading Register Zero
	6.2.1 Bypass Modifications
	6.2.2 Control Modifications
	6.2.3 Impact of Width-Adaptivity

	6.3 Writing Register Zero
	6.3.1 Control Modifications
	6.3.2 Impact of Width-Adaptivity

	6.4 Summary

	7 Port Priority Selection
	7.1 Related Work
	7.2 Bypass Modifications
	7.3 Control Modifications
	7.4 Summary

	8 Non-Uniform Control Completion
	8.1 Register Statistics
	8.2 Unbalancing Completion Trees
	8.3 Results
	8.3.1 Non-WAD Reading
	8.3.2 Non-WAD Writing
	8.3.3 WAD Reading
	8.3.4 WAD Writing

	8.4 Summary

	9 Core Partitioning via Nesting
	9.1 Related Work and Applications
	9.2 Nesting CHP Decomposition
	9.2.1 Unconditional Control Propagation
	9.2.2 WAD Control Propagation

	9.3 Handshaking Expansion Modifications
	9.3.1 Unconditional Read Control Propagation
	9.3.2 Unconditional Write Control Propagation
	9.3.3 WAD Read Control Propagation
	9.3.4 WAD Write Control Propagation

	9.4 Floor Decomposition
	9.4.1 Read Data Nesting
	9.4.2 Non-WAD Write Data Nesting
	9.4.3 Non-WAD Read Control Nesting
	9.4.4 WAD Read Control Nesting
	9.4.5 Non-WAD Write Control Nesting
	9.4.6 WAD Write Control Nesting

	9.5 Production Rules
	9.5.1 Read Data Nested Interconnect
	9.5.2 Write Data Nested Interconnect
	9.5.3 Read/Write Nested Data Interface
	9.5.4 WAD Nested Read Handshake Control
	9.5.5 Unconditional Read Control Nested Interconnect
	9.5.6 WAD Read Control Nested Interconnect
	9.5.7 Unconditional Write Control Nested Interconnect
	9.5.8 WAD Write Control Nested Interconnect

	9.6 Results
	9.6.1 Area
	9.6.2 Non-WAD Reading
	9.6.3 Non-WAD Writing
	9.6.4 WAD Reading
	9.6.5 WAD Writing, Unconditional Outer Write-Enable
	9.6.6 WAD Writing, Conditional Outer Write-Enable

	9.7 Summary

	10 Conclusion
	10.1 Recapitulation
	10.2 Choice
	10.3 Future Work

	A Summary of CHP Notation
	B Bypass CHP
	B.1 Base Design
	B.2 Vertically Pipelined
	B.3 Width-Adaptive
	B.4 Register Zero
	B.5 Port Priority Select
	B.6 Banking

	C Control CHP
	C.1 Base Design
	C.2 Banking
	C.3 Register Zero
	C.4 Port Priority Select

	D Core CHP
	D.1 Pipelined Core
	D.2 WAD Core
	D.3 Nested Core
	D.4 WAD Nested Core

	E Core HSE
	E.1 Pipelined Core
	E.2 WAD Core
	E.3 Non-WAD Nested Core
	E.4 WAD Nested Core

	F Partial HSEs of the Core
	F.1 Non-WAD Core
	F.2 WAD Core
	F.2.1 Reading Control
	F.2.2 Writing Control, Unconditional Write-Enable
	F.2.3 Writing Control, Conditional Write-Enable

	F.3 Non-WAD Nested Core
	F.3.1 Modified Data Interface
	F.3.2 Nested Data Interconnect
	F.3.3 Nested Control Interconnect

	F.4 WAD Nested Core
	F.4.1 Reading
	F.4.2 Writing

	G Reset Convention
	G.1 Global Reset Signals
	G.2 Handshake Protocol Reset State

	H Core PRS
	H.1 Register Cell Array
	H.2 Data Nested Interconnect
	H.3 Control Propagation Array
	H.4 Control Nested Interconnect
	H.5 Data Interface Array
	H.6 Read Handshake Control
	H.6.1 Unconditional Read Handshake Control
	H.6.2 WAD Read Handshake Control
	H.6.3 Nested WAD Read Handshake Control
	H.6.4 Read Handshake Control Termination

	H.7 Write Handshake Control
	H.7.1 Unconditional Write Handshake Control
	H.7.2 WAD Write Handshake Control, Unconditional Enable
	H.7.3 WAD Write Handshake Control, Conditional Enable
	H.7.4 Write Handshake Control Termination

	I Mine Eyes Have Seen The Glory
	J Big Honkin' Tables
	K Top Ten Lists
	Bibliography
	Index

