HACKT PRSIM

A simulator manual

David Fang

This manual describes the usage and operation of HACKT’s prsim simulator.
This document can also be found online at http://www.csl.cornell.edu/ fang/hackt/hacprsim.[]
The main project home page is http://www.csl.cornell.edu/ fang/hackt/.
Copyright (©) 2007 Cornell University
Published by ...

Permission is hereby granted to ...

http://www.csl.cornell.edu/~fang/hackt/hacprsim
http://www.csl.cornell.edu/~fang/hackt/

Short Contents

1 Introduction 1
2 UBAEE . it 3
3 Commandsoiiii 7
4 Execution 35
5 Diagnostics 37
6 Co-simulation 41
L I § 1 49
Command Index........ .. e 51

Table of Contents

1 Introduction........... 1
2 Usage......ooiiii 3
2.1 General Flags 4
2.2 Optimization Flags....... ... i 5
3 Commands............. 7
3.1 Built-in Commandst 7
3.2 General Commandsoouiiiiii 9
3.3 simulation Commandscuuuiunuiie . 9
3.4 channel CommandS.uiriim i 12
3.5 dinfo CommandsSottt 21
3.6 view CommandsSoouiiiii 27
3.7 modes CommandsS.ouuiiriiiii 28
3.8 tracing Commands.............o.iiiiiiiiiiiiii 32
3.9 debug Commands.............ooiiiiiiiiiiiiiiii 33
4 Execution 35
5 Diagnostics................. . i, 37
5.1 Interactive Diagnostics........o 37
5.2 Delay-insensitivity Violations.............l 37
5.3 Exclusion Violationso 38
5.4 Channel Diagnostics ..., 38
5.5 Fatal Diagnostics. ... 38
6 Co-simulation............ 41
6.1 Verilog PLI Setup.o 41
6.2 VPI Basics. 41
6.3 VPI Debuggingo 44
6.4 VPIExample......... 44
6.5 VPI with Channels.o, 44
6.6 Hierarchical co-simulation........... ..., 45
6.7 VPI Hacker’s Guide......... .o 46
T TapS. . 49
7.1 Interactive mode...... ... 49
T2 SCIIPtING. . ottt 49
Command Index......... i .. 51

Concept Index............. 55

iii

Chapter 1: Introduction 1

1 Introduction

hacprsim is a production rule simulator, which is part of the HACKT tool set. hacprsim
simulates circuits at a digital level of abstraction. It is based on older versions of prsim. In
the remainder of this document prsim will refer to the new version hacprsim.

TODO: examples and tutorials taken from test suite?

Chapter 2: Usage 3

2 Usage

FYI: the documentation here is extracted from source file ‘main/prsim.cc’.

-a file [User Option]
Automatically save checkpoint file upon exit, regardless of the exit status. Useful for
debugging and resuming simulations.

-b [User Option]
Batch mode. Run non-interactively, suppressing the prompt and disabling tab-
completion (from readline or editline). Useful for scripted jobs. Opposite of ‘-i’.

-d ckpt [User Option]
Print textual dump of prsim checkpoint file ckpt.

-D time [User Option]
Override the default delay value applied to unspecified rules.

-f flag [User Option]
See Section 2.1 [General Flags], page 4.

-h [User Option]
Print command-line options help and exit.

-H [User Option]
Print list of all interpreter commands and exit.

-i [User Option]
Interactive mode. Show prompt before each command. Enable tab-completion if built
with readline/editline. Opposite of ‘-b’.

-I path (repeatable) [User Option]
Append path to the list of paths to search for sourcing other command scripts in the
interpreter.

-0 vl [User Option]

Optimize internal expanded representation of production rules. Optimizations do not
affect the event outcome of simulations. Current valid values of Ivl are 0 (none) and
1. For more details, See Section 2.2 [Optimization Flags], page 5.

-r file [User Option]
Startup the simulation already recording a trace file of every event. Trace file is
automatically close when simulation exits. This is equivalent issuing trace command
at the beginning of a simulation session.

-t type [User Option]
Instead of using the top-level instances in the source file, instantiate one instance
of the named type, propagating its ports as top-level globals. In other words, use
the referenced type as the top-level scope, ignoring the source’s top-level instances.
Convenient takes place of copy-propagating a single instance’s ports.

4 HACKT PRSIM Manual

-C [User Option]
Pass to indicate that input file is a source (to be compiled) as opposed to an object
file.

-C options [User Option]

When input is a source file, forward options to the compiler driver. NOTE: This
feature does not work yet, due to non-reentrant getopt ().

-V [User Option]
Print version and exit.

2.1 General Flags

General flags are all prefixed with ‘~f’. Unless otherwise noted, all options are negatable
with a ‘-f no-’ counterpart.

-f default [User Option]
Reset to the default set of configuration options. Not negatable.

-f run [User Option]
Actually run the simulator’s interpreter. Enabled by default. ‘-f no-run’ is explicitly
needed when all that is desired are diagnostic dumps.

-f dump-expr-alloc [User Option]
Diagnostic. Print result of expression allocation prior to execution of the simulator.

-f check-structure [User Option]
Run some internal structural consistency checks on nodes and expressions prior to
simulation. Enabled by default.

-f dump-dot-struct [User Option]
Diagnostic. Print a dot format representation of the whole-program production rule
graph. Recommend using with ‘-f no-run’.

-f fast-weak-keepers [User Option]

-f no-weak-keepers [User Option]
By default, ‘iskeeper=1’ rules are omitted entire from simulation because undriven
nodes are assumed to be state-holding, and do not change value. With this option
turned on, rules marked ‘iskeeper’ are enabled, but interpreted as having attributes
‘weak=1" and ‘after=0’, i.e. weak and delay-less.

-f precharge-invariants [User Option]

-f no-precharge-invariants [User Option]
Normally, the simulator completely disregards all precharge expressions in the pro-
duction rules, as they should not affect the logical behavior. With this option turned
on, the simulator also considers the precharge expressions in relation to their position
in the stacks of internal nodes, and checks that

e there is no short between power and ground (interference)
e there is no accidental switching of an output node through any sneak paths.

This is accomplished by analyzing the netlist for each process, by invoking hacknet
as a sub-program.

Chapter 2: Usage 5)

-f dynamic-ground-supply [User Option]

-f no-dynamic-ground-supply [User Option]

-f dynamic-power-supply [User Option]

-f no-dynamic-power-supply [User Option]
Normally, the simulator models prodution rules as always being connected to power
supplies that are always on. However, to model the effect of selectively turning on
power supplies, this option automatically adds the respective power domain supply
signals into the production rule expressions. Pull-up terms are AND-ed with the
corresponding Vdd supply, and pull-down terms are AND-ed with “GND. Rules in
domains that have their supply turned off will be cut-off and not fire. Default: both
disabled

2.2 Optimization Flags

-f fold-literals [User Option]
Collapse leaf nodes of literals directly into their parent expressions. Dramatically
reduces the number of expression nodes allocated, and shortens propagation paths to
output nodes. Enabled at level ‘-0 1’ and above.

-f denormalize-negations [User Option]
Apply DeMorgan’s rules to transform expressions by pushing negations as close each
rule’s root node as possible. Production rules are restructured into equivalent expres-
sions. Reduces the number of negation expressions, enabling better folding of negated
literals. Enabled at level ‘-0 1’ and above.

Chapter 3: Commands 7

3 Commands

This chapter documents the various commands available in the interpreter. Commands are
organized into categories.

FYI: the command documentation has been extracted from source file
‘sim/prsim/Command-prsim.cc’.

3.1 Built-in Commands

The following commands are listed in the builtin category.

help cmd [Command]|
Help on command or category cmd. ‘help all’ gives a list of all commands available
in all categories. ‘help help’ tells you how to use help.

echo args ... [Command]|
Prints the arguments back to stdout.

.. [Command]|
comment ... [Command]
Whole line comment, ignored by interpreter.

exit [Command]|
quit [Command]|
Exit the simulator.

abort [Command]|
Exit the simulator with a fatal (non-zero) exit status.

precision [n] [Command]
Sets the precision of real-valued numbers to be printed. Without an argument, this
command just reports the current precision.

repeat n cmd... [Command]|
Repeat a command c¢md a fixed number of times, n. If there are any errors in during
command processing, the loop will terminate early with a diagnostic message.

meas-time cmd... [Command]
Reports time spent in a command.

interpret [Command]|
Open an interactive subshell of the interpreter, by re-opening the standard input
stream. This is useful when you want to break in the middle of a non-interactive script
and let the user take control temporarily before returning control back to the script.
The exit command or Ctrl-D sends the EOF signal to exit the current interactive
level of input and return control to the parent. The level of shell is indicated by
additional > characters in the prompt. This works if hacprsim was originally launched
interactively and without redirecting a script through stdin.

8 HACKT PRSIM Manual

$ hacprsim foo.haco
prsim> !cat foo.prsimrc
foo.prsimrc

echo hello world
interpret

echo goodbye world
prsim> source foo.prsimrc
hello world

prsim>> echo where am I?
where am I7?

prsim>> exit

goodbye world

prsim> exit

$
The following command is useful for showing each executed command.

echo-commands arg [Command|
Enables or disables echoing of each interpreted command and tracing through sourced
script files. arg is either "on" or "off". Default off.

The following commands pertain to command aliases.

alias cmd args [Command]|
Defines an alias, whereby the interpreter expands cmd into args before interpreting
the command. args may consist of multiple tokens. This is useful for shortening
common commands.

unalias cmd [Command]|
Undefines an existing alias cmd.

unaliasall [Command|
Undefines all aliases.

aliases [Command]|
Print a list of all known aliases registered with the interpreter.

The following commands emulate a directory like interface for navigating the instance
hierarchy, reminiscent of shells. By default, all instance references are relative to the cur-
rent working directory, just like in a shell. Prefix with ‘::’ to use absolute (from-the-top)
reference. Go up levels of hierarchy with ‘. ./’ prefix. The hierarchy separator is ‘.” (dot).

cd dir [Command]
Changes current working level of hierarchy.

pushd dir [Command]|
Pushes new directory onto directory stack.

popd [Command]|
Removes last entry on directory stack.

Chapter 3: Commands 9

pwd [Command|
Prints current working directory.

dirs [Command]|
Prints entire directory stack.

Shell commands may be executed by prefixing a line with ’!’. For example, ‘!whoami’.

New: Block comments are pseudo C-style, using /* and */ to enclose comments. It is
recommended to start use block-comment delimiters on their own lines to avoid confusion.
The line parser is very crude. Nested comments are supported. Files with unterminated
comments will be reported as errors. #-comments are allowed within block comments.

3.2 General Commands
The following commands are listed in the general category.

source script [Command]|
Loads commands to the interpreter from the script file. File is searched through
include paths given by the [‘-I’], page 3 command-line option or the [addpath|, page 9
command.

addpath path [Command|
Appends path to the search path for sourcing scripts.

paths [Command]|
Print the list of paths searched for source scripts.

3.3 simulation Commands

x-all [Command]|
This resets the values of all nodes to X, and clears the event queue and all other
state except for the time, which is left as-is. Trace files are kept open, mode flags,
and channel setups are retained. However, channel logs are closed. This is useful for
executing multiple simulation runs in one long trace.

initialize [Command]
Resets the variable state of the simulation (to unknown), while preserving other set-
tings such as mode and breakpoints. The random number generator seed is untouched
by this command.

reset [Command]|
Similar to initialize, but also resets all modes to their default values. This com-
mand can be used to quickly bring the simulator to the initial startup state, without
having to exit and relaunch. This also resets the random number generator seed used
with seed48.

Running the simulation.

step [n] [Command]
Advances the simulation by n time steps. Without n, takes only a single step. Time
steps may cover multiple events if they are at the exact same time. To step by events
count, use step-event.

10 HACKT PRSIM Manual

step-event [n] [Command]
Advances the simulation by n events. Without n, takes only a single event. A
single event is not necessarily guaranteed to advance the time, if multiple events
are enqueued at the same time.

advance delay [Command]
Advances the simulation delay units of time.

cycle [Command]
Execute steps until the event queue is exhausted (if ever). Can be interrupted by
Ctrl-C or a SIGINT signal.

Coercively setting values.

set node val [delay] [Command]
Set node to val. val can be 0, 1, X, or ~ which means "opposite-of-the-current-value".
If delay is omitted, the set event is inserted ‘now’ at the current time, at the head
of the event queue. If delay is given with a + prefix, time is added relative to ‘now’,
otherwise it is scheduled at an absolute time delay.

set-now node val [Command]
Unlike the set command, this sets the value of node to val immediately, without
enqueuing an event.

setr node val [Command]
Same as the set command, but using a random delay into the future.

setf node val [delay] [Command]
Set forcefully. Same as the set command, but this overrides any pending events on
node.

setrf node val [Command]

Same as setf and setr combined; forcefully set node to val at random time in future,
overriding any pending events.

unset node [Command]
Cancel any pending set commands on node. This effectively causes a node to be
re-evaluated based on the state of its fanin. If the evaluation results in a change
of value, a firing is scheduled in the event queue. This command may be useful in
releasing nodes from a stuck state caused by a coercive set.

unsetall [Command]
Clears all coercive set commands, and re-evaluates all nodes in terms of their fanins.

set-pair-random nodel node2 [Command]
Sets a pair of nodes to random, opposite values.

Freezing switching and simulating event upsets.

freeze node [Command]
Prevents node from switching cause by updates on its fanins. Any pending events
that are already in the event queue will remain in the queue and fire when they reach
the head. Q: How does this affect channels?

Chapter 3: Commands 11

thaw node [Command]
Aliases to the unset, removes the frozen state to allow transition events, and also
re-evaluates fanin to automatically enqueue an event when it should fire.

upset node [val| [Command]|
Forces node to remain stuck at its current value or val (if given) until it is explicitly
restored by the unset command. upset is a combination of setf and freeze.

Breakpoints.

breakpt node [Command|
Set a breakpoint on node. When node changes value, interrupt the simulation (during
cycle, advance, or step), and return control back to the interpreter.

breaks [Command]|
Show all breakpoints (nodes).

nobreakpt node [Command]|
unbreak node [Command]
Removes breakpoint on node.

nobreakptall [Command]
unbreakall [Command]
Removes all breakpoints.

Rescheduling and cancelling pending events.

dequeue node [Command|
Cancels any pending event on node from the event queue. This can result in the
circuit getting stuck in a state until the killed node is explicitly re-evaluated (e.g.
with an unset command). No error condition is returned if there is no pending event
associated with the named node.

reschedule node time [Command]

reschedule-from-now node time [Command]

reschedule-relative node time [Command]

reschedule-now node [Command|
If there is a pending event on node in the event queue, reschedule it as follows:
reschedule interprets time as an absolute time. reschedule-from-now interprets
time relative to the current time. reschedule-relative interprets time relative to
the pending event’s presently scheduled time. The resulting rescheduled time cannot
be in the past; it must be greater than or equal to the current time. Tie-breakers:
given a group of events with the same time, a newly rescheduled event at that time will
be *last* among them. reschedule-now, however, will guarantee that the rescheduled
event occurs next at the current time. Return with error status if there is no pending
event on node.

execute node [Command]
Reschedules a pending event to the current time and executes it immediately. Equiv-
alent to reschedule-now node, followed by step-event.

12 HACKT PRSIM Manual

3.4 channel Commands

The simulator currently provides some limited features for interacting with channels and
environments at run-time. The channel features allow a user to connect arbitrary sources
and sinks to channels, as well as perform assertion checks and value logging. For consistency,
all channels commands are prefixed with channel-.

channel name type bundle rails [Command|
Registers a named channel (with constituents) in a separate namespace in the simu-
lator, typically used to drive or log the environment. The name of the channel should
match that of an instance (process or channel) in the source file.

e name is the name of the new channel in the simulator’s namespace
e type is a regular expression of the form [ae]?[nv]?:[01]17, where
e a means active-high acknowledge
e e means active-low acknowledge (a.k.a. enable)
e n means active-low validity (a.k.a. neutrality)
e v means active-high validity. These are also the names of the channel signals.

e [01] is the initial value of the acknowledge during reset, which is only rele-
vant to channel sinks.

e bundle is the name of the data bundle (rail group) of the channel in the form
[name] : size, where size is the number of rail bundles (M in Mx1ofN). If there
are no bundles, then leave the name blank, i.e. just write :0 If there is only one
bundle (1x10fN), use size 0 to indicate that named bundle is not an array.

e rails ([“]rname:radix) is the name and size of each bundle’s data rails, rname
is the name of the data rail of the channel. radix is the number of data rails per
bundle (N in Mx10fN). Use radix 0 to indicate that rail is not an array (lofl).
If rails is prefixed with a =, then the data rails will be interpreted as active low.

For example, channel e:0 :0 d:4 is a conventional elof4 channel with active-high
data rails d[0..3], and an active-low acknowledge (enable) reset to 0, no bundles.

The channel names used in the simulator must correspond to an actual channel (or
process) in the input description. (The name used for registration actually resides in the
simulator’s own namespace, separate from the compiled circuits.) Upon registering a chan-
nel name, the simulator locates all relevant subnodes of the channel by appending .e or .a
(or .vor .n)and .d[i] (or however the rails are named) to the end of the channel’s name.
The data rails’ name may be prefixed with ~ to indicate that the rails are active-low. The
following are examples of channel commands.

channel A e:0 :0 d:2
channel B e:1
channel
channel
channel
channel
channel
channel

1
1
01
1

QMmO Q
o M O O

Chapter 3: Commands 13

channel J e:0 :0 7d:2

channel H : :0 7"d:2
Respectively, the channel declarations are: (A) an elof2 channel with .e initially low (if
coming from the environment), (B) an elof2 with .e initially high, (C) an elof2 with
array data rails named r, (D) an elof2 with one non-array data rail r, (E) an alof4 with
.a initially high, (F) an e4xlof4 channel, (G) an eviof2 (enable-valid protocol), (H) an
acknowledgeless 10£2 channel (just data-rails), (J) an elof2 with active-low data rails, and
(K) an acknowledgeless, active-low dual-rail.

A channel can be declared without an acknowledge by omitting the a or e desginator and
the initial value after the colon, as in examples H and K, above. Acknowledgeless channels
cannot be used as sources or sinks, however, they can still be watched, logged, and checked
against expected values. (Watching, logging, and checking values on channels does not use
the acknowledge signal of channels.)

The shared-valid protocols use a additional validity (or neutrality) signal in the channel
to perform the handshake. For example, the validity signal can be generated by the comple-
tion tree from the sender, and sent to the receiver so the receiver can reuse the completion
signal without recomputing it. Shared-validity channels operate slightly differently than
other channels. Data is considered valid when the validity is true, not necessarily when
the data rails are in a valid state. (Of course, in the cases of properly constructed and
connected completion trees, the data will be valid.) Thus, data is logged, printed, checked
only when the validity signal becomes active, which is usually after the data rails are valid.
(More on sourcing and sinking of shared-validity channels below.)

Another class of channels use level-encoded dual rail (LEDR). Such channels are declared
using channel-ledr.

channel-ledr name ack:init bundles:num data:init repeat:init [Command|
Registers a level-encoded dual-rail (LEDR) channel. LEDR channels do not follow
a return-to-null protocol; there is exactly one transition per iteration on the forward
path. Currently, LEDR channels only encode 1-bit of information per channel. The
data rail represents the logic level, and the repeat rail is toggled to communicate
another token with the same value. The channel acknowledge (if present) also fires
onces per handshake. Together, they are used for 2-phase protocols. The name of
the channel should match that of an instance (process or channel) in the source file.

e name is the name of the new channel in the simulator’s namespace
e ack is a regular expression of the form id: [01], where

e if an identifier id is given before the :, it is interpreted as the name of an
acknowledge signal.

e The value after the : (required) is interpreted as the initial state of the
acknowledge wire. There is no need to express whether the acknowledge is
active-high or active-low.

e : with no name represents a channel with no acknowledge.

e bundles is the name of the data-repeat bundle followed by : and the number of
bundles. Pass just :0 to indicate that there is only one data-repeat pair.

e data is the name of the data rail, interpreted with active-high logic levels. The
init value specifies the initial value of the data rail on an empty channel.

14 HACKT PRSIM Manual

e repeat is the name of the repeat rail. init specifies the initial value of the repeat
rail on an empty channel.

The initial values of the three rails determines the “empty-parity” of the channel,
the parity of the rails when the channel is in its empty state. The initial values are
used when the channels are connected up to driving environments such as sources
and sinks. For bundled channels, the initial values of data and repeat apply to all
bundles.

channel-ledr NAME e:0 :0 d:0 r:0

channel-ledr NAME e:1 :0 d:0 r:0
channel-signed chan [Command]|
channel-unsigned chan [Command]

By default, bundled channels are interpreted as unsigned numbers. channel-signed
indicates that chan should be interpreted and displayed as signed values. Signedness
is only applicable to binary (radix-2) channels with more than one bit; non-radix-
2 channels are always interpreted as unsigned, and single bit channels are always
unsigned (0 or 1). It is generally recommended to declare the signedness of a channel
immedately after declaring it, and before any values are interpreted.

Yet another class of channels captures bundled-data interfaces. Bundled-data channels
contain one or more single-rail data wires (bus), and an acknowledge and request rail. Data
is interpreted as valid during the active edge of the request rail. Two-phase and four-phase
handshake variants exist for bundled-data.

channel-bd-2p name ack:init req:init data:width [Command|
Registers a bundled-data (BD) channel, which consists of a bus, request rail, and
acknowledge rail. The request and acknowledge perform a two-phase handshake on
every token; these signals toggle once per handshake. The name of the channel should
match that of an instance (process or channel) in the source file.

e name is the name of the new channel in the simulator’s namespace
e ack is a regular expression of the form id: [01], where
e id is the name of the acknowledge signal.
e The value after the : (required) is interpreted as the initial state of the
acknowledge wire, if driven by sink.

e req is the name of the request signal. The value given is the initial value of the
request signal, if driven by a source. Together the XOR of the initial values of
the acknowledge and request defines the empty-parity.

e data is the name of the data rail(s), interpreted with active-high logic levels
(prefix with ~ to make active-low). The num value specifies the number of wires
(bus width). If the channel is data-less (handshake only), then omit the data rail
name and just write :.

channel-bd-2p NAME e:1
request v, and data is
channel-bd-2p NAME a:1
request r, and data is

:1 d:0 -- this names the ack e and the
single-wire bundled-data channel.

:0 d:8 -- this names the ack a and the
8-bit bundled-data channel.

pR oS

Chapter 3: Commands 15

channel-bd-4p name ack:init req:init data:width [Command]
Registers a bundled-data (BD) channel, which consists of a bus, request rail, and
acknowledge rail. The request and acknowledge perform a four-phase handshake on
every token; these signals toggle twice per handshake. The name of the channel
should match that of an instance (process or channel) in the source file.

e name is the name of the new channel in the simulator’s namespace
e ack is a regular expression of the form id: [01], where
e id is the name of the acknowledge signal.

e The value after the : (required) is interpreted as the initial state of the
acknowledge wire, if driven by sink.

e a denotes an active-high acknowledge, and e denotes an active-low acknowl-
edge, (same as 1ofN channels).

e req is the name of the request signal. The value given is the initial value of the
request signal, if driven by a source — THIS IS IGNORED FOR NOW, source
channels will always drive this to inactive on reset.

e data is the name of the data rail(s), interpreted with active-high logic levels
(prefix with ~ to make active-low). The num value specifies the number of wires
(bus width). If the channel is data-less (handshake only), then omit the data rail
name and just write :.

channel-bd-4p NAME e:0 v:1 d:0 -- this declares an active-low acknowledge,]]
active-high request, single-wire bundled-data channel.

channel-bd-4p NAME a:1 n:0 d:8 -- this declares an active-high acknowledge,|i
active-low request, 8-bit bundled-data channel.

Data is guaranteed to be stable until an acknowledge is received.

Finally, there is support for synchnous clocked channels.

channel-clocked name clk:init data:width [Command]|
Registers a synchronous (clocked) channel, which consists of a data bus and a clock
signal. The name of the channel should match that of an instance (process or channel)
in the source file.

e name is the name of the new channel in the simulator’s namespace

e clk is the name of the clock signal. The value given is the initial value of the clock
on reset, if driven by a source. If the name is prefixed by ~ then clock is active
low (negative-edge). If the name is prefixed by * then clock is double-edged.
Otherwise, clock is considered positive-edge only. The init initial value is only
relevant for double-edged clocks.

e data is the name of the data rail(s), interpreted with active-high logic levels
(prefix with ~ to make active-low). The num value specifies the number of wires
(bus width). If the channel is data-less (handshake only), then omit the data rail
name and just write :.

channel-clocked NAME clk:0 d:0 -- this names the clock clk,
and data d is a single-wire channel.

clk is pos-edge triggered only.

channel-clocked NAME “clk:0 d:8 -- this names the clock clk,

16 HACKT PRSIM Manual

and data d is a 8-bit bundled-data channel.

clk is neg-edge triggered only.

channel-clocked NAME *clk:0 d:8 -- this names the clock clk,
and data d is a 8-bit bundled-data channel.

clk is double-edge triggered.

Sources do not actually drive the clock, they only setup the data during clock edges.

When configured as a source, clocked-channels only set the data rails in response to the
clock signal; it never drives the clock rail. This is by design, because the same clock may be
referenced to any number of clocked channels. (The clock should be driven separately by
clock-source.) For single-edged clocked channels, the data is set during the inactive clock
phase, and held during the active clock phase, in other words, the data is set up on the
opposite triggering clock edge. For double-edged clock channels, the data is set/evaluated
on every edge.

clock-source node N [Command]|
Drives wire node with toggling values. If node is prefixed with ~, then clock is active
low (negative edge). If node is prefixed with *, then clock is double-edged. The reset
value, init, is only relevant to double-edged clocks. With no prefix, the clock is active-
high (positive edge). N is the number of cycles, or * for infinite. For single=edged
clocks, the clock always resets to its inactive value. For single-edged clocks, a rise
and fall counts as one cycle. If named clock-source already exists, restart it using the
new configuration and number of edges.

clock-source CLK:0 * -- clk is pos-edge, infinitely running clock.
clock-source "CLK:1 20 -- clk is a neg-edge clock running 20 cycles.|i
clock-source *CLK:0 * -- clk is double-edge clock, reset to O,
running infinitely.

One can get information about channel configurations with the following commands:

channel-show chan [Command]|
Print the current configuration and state of channel chan. This also shows the se-
quence of values associated with sources and expectations with sequence position, if
applicable. Looping values are indicated with *. This also shows the origin of the

value sequence and the name of the current log file to which values are dumped, if
enabled.

channel-show-all [Command]|
Print the current configuration for all registered channels.

channel-get chan [Command]
This prints the current handshake state of a channel, including the current value,
if valid, and the expected activity (e.g., waiting for data from sender, or ack from
receiver).

channel-assert chan args... [Command]
This asserts the current state of a channel. Legal values for arguments (in any order
and combination):

Chapter 3: Commands 17

e <int> the integer value of the data rails; passes only if data is valid and matches
the expected value.

e valid (four-phase or two-phase) passes if the channel data rails are in the valid
state, or the validity signal (if any) is active, or a two-phase channel is in the
set-phase (full).

e neutral (four-phase or two-phase) passes if the channel data rails are all neu-
tral/null.

e full is synonymous with valid
e empty is synonymous with neutral

e ack (four-phase only) passes if the acknowledge is in the active state, whether
the signal is active-high or active-low.

e neg-ack (four-phase only) passes if the acknowledge is in the negative state.

e waiting-sender (four-phase or two-phase) passes if the channel is in a state of
the handshake that expects the next action from the sender of the channel.

e waiting-receiver (four-phase or two-phase) passes if the channel is in a state
of the handshake that expects the next action from the receiver of the channel.

The error-handling policy in the case of a failed assertion is controlled by channel-
expect-fail.

To control which channels should report values to the console, the simulator provides
basic watch commands.

channel-watch chan [Command|
Report value of data rails when channel chan has valid data. Data validity is only
determined by the state of the data rails, and not the acknowledge signal. An unstable
channel (that can transiently take valid states) will report every transient value.
Channels in the stopped state will still be reported, make sure that they are resumed
by channel-release.

channel-unwatch chan [Command]|
Remove channel chan from watch list.

channel-watchall [Command|
Report values on all channels when data rails become valid.

channel-unwatchall [Command]|
Silence value-reporting on all channels.

channel-report-time [on|off] [Command]
Set this switch on to show simulation timestamps when watched channels are printed
or logged channels are written to file. Default: off

Channel values can also be logged to a file or compared against expected values.

channel-log chan file [Command]|
Record all valid data values on channel chan to output file. File stream automatically
closes upon end of simulation, or with an explicit channel-close. Channels in the
stopped state will NOT be reported, make sure that they are resumed by channel-
release.

18 HACKT PRSIM Manual

channel-close chan [Command]
Close any output file streams associated with channel chan. This flush the current
log file, closes the file, and stops logging. This does not affect source nor expect value
sequences since those files are read in their entirety upon configuration.

channel-close-all [Command]
Apply channel-close to all channels.

channel-expect-file chan file [Command]

channel-expect chan file [Command]|
Compare data values seen on channel chan against a sequence of values from file.
Error out as soon as there is a value mismatch. In this variant, once value sequence
is exhausted, no more comparisons are done, and channel values go unchecked. See
also channel-expect-file-loop.

channel-expect-file-loop chan file [Command]|
channel-expect-loop chan file [Command]
Like channel-expect-file but repeats value sequence infintely.

channel-expect-args chan values... [Command]
Tells a channel chan to expect values on data rails. Stops checking values after last
value is used.

It is legal to log and expect values on the same channel.

The following commands can further control when channels log or check values. Ignoring
can be useful for masking out atypical phases of behavior or turning off checking. Ignoring
channels is independent of the stopped/released state of a channel.

channel-ignore chan [Command|
Stop logging and checking expected values on channel chan. This can be useful
for momentarily ignoring a sequence of values. An ignored channel will continue to
respond to changes until it is stopped, by a stop command.

channel-heed chan [Command]|
Take channel chan out of the ignored state.

channel-ignore-all [Command]
Stop logging and checking all channel values.

channel-heed-all [Command]|
Continue logging and checking all channel values.

Value files: The files referenced by channel-expect and channel-source may contain
comments and blank lines, which are skipped. Only the first value on each line is used, so
value sequences should be newline-separated. For now, the remained of each line is simply
ignored, so you may use them for comments, but this may change in the future. The other
legal value in the file is X, which is interpreted as don’t care for expected values, and random
for source values.

Channels can be configured to operate as environments when they are not already con-
nected to inputs or outputs. The only conflicting (illegal) configuration combination is that

Chapter 3: Commands 19

a channel cannot act as source while expecting values. (Why would you want to do that
anyways?) Channels configured as sources or sinks can be controlled through the following
commands.

channel-source-file chan file [Command]

channel-source chan file [Command]
Configure channel chan to source values from the environment. Values are take from
file and read into an internal array. Once values are exhausted, the channel stops
sourcing. To repeat values, use channel-source-file-loop. A channel configured
as a source should have the production rules drive the acknowledge signal and no
other rules driving the data rails (otherwise the simulator will issue a warning).

channel-source-file-loop chan file [Command]
channel-source-loop chan file [Command]|
Like channel-source-file except that value sequence is repeated infintely.

channel-source-args chan [values...] [Command]
Source values on channel chan using the values passed on the command. Sourcing
stops after last value is used. Legal values are integers and "X’ for random. If no
values are given, then the channel will not source any values, but it will still reset the
data rails to neutral state.

channel-rsource chan [Command]
Configures a channel to source random data values. This is useful for tests that do
not depend on data values.

channel-sink chan [Command]|
Configure a channel to consume all data values (infinitely). A sink-configured chan-
nel should have data rails driven by the production rules and nothing else driving
the acknowledge signal (simulator will issue warning otherwise). A sink-configured
channel can also log and expect values. Mmmmm... tokens! Nom-nom-nom...

It is legal to source and sink on the same channel.

It is often useful to query the status of a channel that is sourcing or expecting values.

channel-assert-value-queue chan val [Command]
For channels that are sourcing or expecting values, assert the state of the channel
value array being used. val is 1 to assert that values are still remaining, 0 to assert
that values are empty (channel is finished). Looped sources and expects will never be
empty. This is useful for checking that finite sequence tests have actually completed.
Exits fatally if assertion fails.

Channel sources and sinks can be configured to respond with a different timing from the
global policy.

channel-timing chan [mode [args|| [Command]
With no additional arguments, report the timing mode of channel chan. Timing only
applies to channels that are configured as a source or a sink. Modes:

e global : use the global simulation-wide timing policy.

20 HACKT PRSIM Manual

e after [delay] : use a fixed delay.

e random [[min]:[max]] : if max is specified, use a uniform distribution delay
bounded by max, otherwise return an exponential variate delay with a minimum
of min. Unspecified min bounds defaults to 0. Unspecified max defaults to +INF.

e binary [min]:[max] prob : chooses either the min or the max value with prob
probability of taking the min value.

Shared-validity environments: Shared-validity sources operate slightly differently from
the other standard channels. Sources of such channels will drive both the data-rails and the
validity signal. The validity-signal will automatically react when the data-rails enter a valid
state, thus it is treated as both an input and output to the source. However, the validity
signal should not be driven by any other circuit, i.e. it should have no fanin. Shared-validity
sinks do not respond to data-rails at all, they only respond to the validity signal with the
acknowledge. Thus it is the responsibility of the circuit under test to provide the validity
signal.

After configuring channels as sourcing or sinking environments, there is one more addi-
tional step to enabling them. Channels startup in the stopped state, in which they do no
respond to any changes in the circuit, data-rails or acknowledges. Resetting a channel forces
a channel into its initial state. For sources, the data rails are always neutral. For sinks,
the acknowledge is in the initial state that was specified when the channel was declared.
A channel will begin to respond to the circuit only after it has been released. Channels
may be individually stopped or released, and reset-all and release-all are also provided for
convenience.

channel-reset chan [Command|
Force a environment-configured channel into its reset state, i.e. a source will reset
its data rails to neutral (ignoring state of acknowledge), and a sink will set the ac-
knowledge to the initial value (from configuration) regardless of the data rails (and
validity). IMPORTANT: This command also freezes a channel in the stopped state,
like channel-stop and will not respond to signal changes until resumed by channel-
release.

channel-reset-all [Command]|
Force all source- or sink- configured channels into their reset state, as done by
channel-reset. This is typically done at the same time as global reset initaliza-
tion.

channel-stop chan [Command]|
Freeze a source- or sink-configured channel so that it stops responding to signal tran-
sitions from the circuit. Stopped channels will not log data nor assert expected values
because they may be in a transient state. A channel can be unfrozen by channel-
release.

channel-stop-all [Command]|
Applies channel-stop to all channels.

Chapter 3: Commands 21

channel-stop-on-empty chan [Command|

channel-continue-on-empty chan [Command]|
For channels that are sinking and expecting values (non-loop), stop sinking as soon as
expected values are exhausted. The default behavior for a sink is to continue sinking
regardless of checking against expected values.

channel-release chan [Command]
Releases a source- or sink-configured channel from the stopped state, so that it begins
to respond to circuit signal transitions (and continue logging and expecting). Upon
resuming, the channel evaluates its inputs and adds events to the event queue as
deemed appropriate.

channel-release-all [Command|
Applies channel-release to all channels. This is typically used at the end of a reset
initialization sequence as the circuit is brought out of the reset state.

Timing: delays are given some default value, except in random timing mode, where
delays are randomized. TODO: configure after delays on sources and sinks.

Re-initialization: The initialize and reset also affect the state of channels.
initialize retains the configuration (source, sink, watch, expect) of all channels,
however, the data rail tracking is reset to account for all nodes being set to X. All output
log streams are closed. Value sequences for sourcing and expecting are retained, but the
position index is reset to 0, the beginning. (Rationale: it is uncommon to start at different
offsets in the value sequences.) reset will completely wipe all registered channels, as if the
simulator had just started up.

3.5 info Commands

The first subset of commands give information about the properties of the simulated pro-
duction rules and contain no stateful information.

attributes node [Command]
Prints the list of attributes attached to the named node.

fanin node [Command]|
Print all production rules that can fire NODE.

fanin-get node [Command|
Print all production rules that can fire NODE. Also prints current values of all ex-
pression literals as 'node:val’ and subexpressions as ’(expr)<val>’.

fanout node [Command]|
Print all production rules that NODE participates in.

fanout-get node [Command]
Print all production rules that NODE participates in. Also prints current values of
all expression literals as 'node:val’ and subexpressions as ’(expr)<val>’.

feedback node [Command]
feedback-get node [Command]|
Print all nodes that NODE drives and is also driven-by. The takes the intersection of
fanout nodes and fanin nodes. The -get variant also prints the current node values.

22 HACKT PRSIM Manual

rules proc [Command]

rules-verbose proc [Command]|
Print all rules belonging to the named process proc. ’.” can be used to refer to the
top-level process. The -verbose variant prints the state of each node and expression
appearing in each rule.

allrules [Command]|

allrules-verbose [Command]
Print all rules in the simulator, similar to hflat. The -verbose variant prints the
state of each node and expression appearing in each rule.

rings-mk node [Command]|
rings-mk-get node [Command]|
Print forced exclusive high/low rings of which node is a member.

allrings-mk [Command]|
allrings-mk-get [Command]
Print all forced exclusive high/low rings.

rings-chk node [Command]
rings-chk-get node [Command]
Print all checked exclusive rings of which node is a member.

allrings-chk [Command]|
allrings-chk-get [Command]|
Print all checked exclusive rings of nodes.

what name [Command|
Print the type of the instance named name.

who name [Command]|

who-newline name [Command]
Print all equivalent aliases of instance name. The ‘-newline’ variant separates names
by line instead of spaces for improved readability.

1s name [Command]|
List immediate subinstances of the instance named name.

The following commands give information about the state of the simulator and the
simulated production rules. The assert-* commands exit with fatal error if the specified
condition of a given node is not true. The no-* commands exit with fatal error if there
exist any nodes that match the specified criteria. (Currently, the no-* commands do not
honor the assert-fail diagnostic overrides; errors are always treated as fatal.)

get node [Command]|
Print the current value of node.

getports struct [Command]
getinports struct [Command]|

Chapter 3: Commands 23

getoutports struct [Command|
Print the state of all port nodes of struct. Useful for observing boundaries of channels
and processes. getinports and getoutports partition the set of ports into inputs
and outputs. Directionality of inputs/outputs is inferred by the presence of fanin
local to the struct process instance (its type).

getcommonports structl struct2 [Command]
Prints the state of nodes that are common to structl and struct2.

getlocal struct [Command]|
Print the state of all publicly reachable subnodes of struct. Recursive search does not
visit private subnodes. Useful for observing channels and processes.

getall struct [Command|
Print the state of all subnodes of struct. Useful for observing channels and processes.

assert node value [Command]
Error out if node is not at value value. The error-handling policy can actually be
determined by the assert-fail command. By default, such errors are fatal and
cause the simulator to terminate upon first error.

assertn node value [Command]
Error out if node is at value value. Error handling policy can be set by the assert-
fail command. By default such errors are fatal.

assert-pending node [Command]|
Error out if node does not have a pending event in queue. The error handling policy
is determined by the assert-fail command. By default, such assertion failures are
fatal.

assert-pending node [Command]|
Error out if node does have a pending event in queue. The error handling policy is
determined by the assert-fail command. By default, such assertion failures are
fatal.

assert node value [Command|
Error out if node is driven with strength value. The error-handling policy can actually
be determined by the assert-fail command. By default, such errors are fatal and
cause the simulator to terminate upon first error.

queue [Command|
Print the event queue.

assert-queue [Command]
Error out if event queue is empty. Useful for checking for deadlock. The error han-
dling policy is determined by the assert-fail command. By default, such assertion
failures are fatal.

assertn-queue [Command]
Error out if event queue is not empty. Useful for checking for checking result of cycle.
The error handling policy is determined by the assert-fail command. By default,
such assertion failures are fatal.

24 HACKT PRSIM Manual

tcount node [Command]
tcount shows the number of non-X transitions that have ever occurred on node.

check-invariants [Command]|
Checks every invariant expression in the design. Returns true if there were any certain
violations, excluding possible violations of invariants.

backtrace node [val] [Command]|
Trace backwards through a history of last-arriving transitions on node node, until a
cycle is found. If val is omitted, the current value of the node is assumed. Useful for
tracking down causes of instabilities, and identifying critical paths and cycle times.

why-x node [Command]|

why-x-verbose node [Command|

why-x-1 node [Command]|

why-x-1-verbose node [Command]

why-x-N node maxdepth [Command]|

why-x-N-verbose node maxdepth [Command]|
Print causality chain for why a particular node (at value X) remains X. In expressions,
X nodes that are masked out (e.g. 1 | X or 0 & X) are not followed. The verbose
variant prints more information about the subexpressions visited (whether conjunctive
or disjunctive), and pretty prints in tree-indent form. Recursion terminates on cycles
and already-visited nodes. The ‘-1’ variant only queries through depth 1, and the
‘=N’ variant queries to a maximum depth of maxdepth.

why node [vall [Command]
why-verbose node [val] [Command]
why-1 node [val| [Command]
[]
[|
[]

why-1-verbose node [vall Command
why-N node maxdepth [vall Command
why-N-verbose node maxdepth [val] Command

Print reason for node being driven to a given value, 0 or 1. X is not a valid value
for this procedure. If val is not given, it is assumed to be the current value of the
node. The algorithm examines each node’s fanins and follows nodes on paths where
the subexpression is true (path through transistors is on). The analysis will terminate
at state-holding nodes that are not being driven to their current value. This is an
excellent aid in debugging unexpected values. The verbose variant prints expression
types as it auto-indents, which is more informative but may appear more cluttered.
The ‘-1’ variant only queries through depth 1, and the ‘-N’ variant queries to a
maximum depth of maxdepth.

why-not node [vall [
why-not-verbose node [val| [Command
why-not-1 node [val| [Command

[

[

[

why-not-1-verbose node [val] Command
why-not-N node maxdepth [val] Command
why-not-N-verbose node maxdepth [vall Command

Print reason for node not being a given value, 0 or 1. X is not a valid value for this
procedure. If val is not given, it is assumed to be opposite of the current value of the

Chapter 3: Commands 25

node. "Why isn’t this node changing?" The algorithm examines each node’s fanins
and follows nodes that prevent the relevant expression from evaluating true. This is
an excellent tool for debugging deadlocks. The verbose variant prints expression types
as it auto-indents, which is more informative but may appear more cluttered. The
‘=1’ variant only queries through depth 1, and the ‘-N’ variant queries to a maximum
depth of maxdepth.

status value [proc] [Command]

status-newline value [proc] [Command]
Print all nodes whose current value is value. Frequently used to find nodes that are
in an unknown (’X’) state. Valid value arguments are [0fF] for logic-low, [1tT] for
logic-high, [xXuU] for unknown value. If proc is given, then restrict the scope of
search to only subnodes of that structure. The -newline variant prints each node on
a separate line for readability.

no-status val [Command]|
Asserts that there are no nodes at value val.

get-driven node [Command]|
Reports the drive state of pull-up/dn on a node. See also fanin-get for details.

status-interference [Command]|

status-weak-interference [Command]|
Print all nodes that have strongly interfering fanins, i.e. the pull-up and pull-downs
are on and causing shorts. status-weak-interfere reports possible interferences
where at least one direction is being pulled X (unknown). This command is useful for
checking the safety of a particular state or snapshot of your circuit.

no-status-interference [Command]|
no-status-weak-interference [Command|
Asserts that there are no nodes with interfering (or weak-interfering) fanins.

status-driven val [Command]
status-driven-fanin val [Command]
no-status-driven val [Command]|
no-status-driven-fanin val [Command]|
Reports all nodes that are in a particular drive-state. The drive-state of a node is the
strongest pull in any direction. The current value of the node is not considered. val is
0 for undriven nodes, X for X-driven nodes, and 1 for driven nodes (which may include
interfering nodes). The status-driven-fanin variant filters out nodes with no fanin
(inputs), which are always undriven. The no- command variants assert that there
are no nodes that match the specified drive state. For example, no-status-driven-
fanin 0 asserts that no nodes with fanins are floating or in the high impedance state.

status-frozen [Command]
status-frozen-get [Command]
Print all nodes that have been frozen (switching suppressed).

time [Command]|
What time is it (in the simulator)?

26 HACKT PRSIM Manual

unused-nodes [Command]
unused-nodes-get [Command]
Print all nodes with no fanins and no fanouts, regardless of state.

no-unused-nodes [Command]
Assert that there are no unused nodes (those without fanout). This is mostly useful
for checking closed systems that do not required interaction with any environment.

unknown-inputs [Command|
Print all nodes with value X that have no fanins, i.e. input-only nodes. Connections
to channel sinks or sources can count as inputs (fake fanin). Great for debugging
forgotten environment inputs and connections! This variant includes X-nodes with
no fanouts (unused nodes).

unknown-inputs-fanout [Command]
Print all nodes with value X that have no fanins, i.e. input-only nodes. This variant
excludes X-nodes with no fanouts (unused nodes).

no-unknown-inputs [Command]
Assert that there are no inputs nodes at X.

no-unknown-inputs-fanout [Command]
Assert that there are no inputs nodes with fanout at X.

unknown-outputs [Command]
Print all nodes with value X that have no fanouts, i.e. output-only nodes. Connections
to channel sinks and sources can counts as outputs (fake fanout). This will not catch
output nodes that are fed back into circuits. This variant excludes X-nodes with no
fanouts (unused nodes).

no-unknown-outputs [Command]
Assert that there are no outputs nodes at X.

unknown-fanout [Command]
Print all nodes with value X that have fanouts. Connections to channel sinks and
sources can counts as outputs (fake fanout).

no-unknown-fanout [Command]|
Assert that there are no nodes with fanout at X.

unknown-undriven-fanin [Command]|
Print all nodes with value X that have fanins, but are not being pulled. These nodes
are typically candidates for adding resets to fix.

no-unknown-undriven-fanin [Command]|
Assert that there are no nodes at X with fanins and are being undriven.

exceptions [Command|
Prints the information recorded in recently occurred exceptions. The simulators ex-
ception list is cleared each time simulation is advanced by any number of steps. This
command is most useful immediately after halting on exceptions. This is not fully
implemented yet: exceptions are not saved in checkpoints yet. Noted as ACX-PR-
6641.

Chapter 3: Commands 27

3.6 view Commands
View commands affect what is displayed while the simulation is running.

time-fmt [[nolfixed|[no|sci| INT]* [Command]
Controls the formatting and precision of time values.
e [nolfixed : fixed-point
e [nojsci : scientific-notation

e INT : precision

confirm [Command]
noconfirm [Command]|
Controls whether or not correct assertions are reported.

watch nodes... [Command]|
Adds nodes to a watch-list of nodes to display when their values change, much like
breakpt, but doesn’t interrupt simulation.

unwatch nodes... [Command]
Removes nodes from list of watched nodes.

watches [Command]|
Print list of all explicitly watched nodes.

watchall [Command]|
nowatchall [Command]|
Display every node value change (regardless of present in watch-list). nowatchall
restores the state where only explicitly watched nodes are displayed on value changes.

cause [Command]

nocause [Command|
cause displays causal information of nodes as they change value. nocause hides cause
information, but silently keeps track.

tcounts [Command]

notcounts [Command]|
tcounts displays transition counts on nodes as they change value. notcounts hides
transition count information. Only transitions to 0 or 1 are counted; transitions to X
are not counted. Transitions are always counted, just not always displayed.

zerotcounts [Command]|
Reset all transition counts to 0.

watch-queue [Command]|

nowatch-queue [Command]|
Show changes to the event-queue as events on only watched nodes are scheduled.
Typically only used during debugging or detailed diagnostics.

watchall-queue [Command]|

nowatchall-queue [Command]
Show changes to the event-queue as every event is scheduled. Typically only used
during debugging or detailed diagnostics.

28 HACKT PRSIM Manual

3.7 modes Commands

This section lists commands that affect the execution of the simulation.

checkexcl [Command]|

nocheckexcl [Command]|
Enables mutual exclusion checking for checked exclusive node rings. Checking is
enabled by default. Users of old prsim should replace uses of CHECK_CHANNELS with
these commands.

eval-order [mode] [Command]
With no argument, reports the current evaluation ordering mode. With mode (either
inorder or random), fanouts are evaluated either in a pre-determined order, or in
random order. Random ordering is useful for emulating random arbitration among
fanouts of the same node. Default mode is inorder.

Timing mode.

timing [mode| [args] [Command]
Modes: ‘uniform’ delay applies the same delay to all rules. uniform is useful for get-
ting quick transition counts. ‘random’ gives every event a different randomly assigned
delay. random is most useful for detecting non-QDI logic violations. ‘after’ applies a
different delay for each rule, as determined by the after PRS rule attribute. binary
and bounded modes are most useful for testing that certain timing assumptions (path
races) are necessary.

The after_min and after_max rule attributes only have any effect in random mode
or on nodes marked always_random. In random-mode, after_min specifies a lower
bound on delay, and after_max specifies an upper bound on delay. When no upper
bound is specified, the delay distribution is an exponential variate; when an upper
bound is specified, a delay is generated with uniform distribution between the bounds.
If only a lower bound is specified, its value is added to the exponentially distribtued
random delay.

Timing ‘random’ also takes additional optional arguments for default min and max
delays for unspecified rules; user-written values from the source will always take prece-
dence. A max delay value of 0 is interpreted as being unbounded.

e ‘timing random’ preserves the default min/max delays

e ‘timing random :’ will clear the default min/max delays

e ‘timing random X:’ sets the default min delay

e ‘timing random :Y’ sets the default max delay

e ‘timing random X:Y’ sets the default min and max delays
Timing ‘binary’ randomly chooses a min or max delay value with a specified prob-
ability, like a skewed coin-flip. Specifying both min and max values is required X:Y.

This mode completely disregards any user-specified delay attributes in the source,
including delay ‘after=0’.

Timing ‘bounded’ randomly chooses a min or max delay value with a specified prob-
ability, like a skewed coin-flip. Specifying both min and max values is required X:Y.

Chapter 3: Commands 29

Unlike binary mode, bounded delays are overridden by user-specified delay attributes
‘after_min’ and ‘after_max’.

e ‘timing binary 10:90 0.5’
e ‘timing binary 10:50 0.95’
e ‘timing bounded 10:50 0.8’

random [Command]|
Deprecated, but retained for legacy compatibility. Synonymous with ‘timing
random’.

norandom [Command]|
Deprecated, but retained for legacy compatibility. Synonymous with ‘timing
uniform’.

seed48 [int int int] [Command]

Corresponds to libc’s seed48 function. With no argument, print the current values
of the internal random number seed. With three (unsigned short) integers, sets the
random number seed. Note: the seed is automatically saved and restored in check-
points. The seed value is reset to 0 0 0 with the reset command, but not with the
initialize command.

The simulator now supports weak rules which can drive un-pulled nodes but always yield
to normal rules. Weak rules are marked with the [weak=1] production rule attribute. The
use of weak-rules can be globally enabled or disabled.

weak-rules [on|off|show| hide] [Command]
Simulation mode switch which globally enables or disables (ignores) weak-rules.
Weak-rules can only take effect when normal rules pulling a node are off. The hide
and show options control whether or not weak rules are displayed in rule queries,
such as fanin, fanout, and rules.

Diagnostic controls. The following commands control the simulation policy for run-time
logic violations. Allowed arguments are: ignore, warn, notify, and break. ignore silently
ignores violations. notify is the same as warn, which prints a diagnostic message without
interrupting the simulation. break reports an error and stops the simulation. When no
argument is given, just reports the current policy.

unstable [mode] [Command]
Set the simulator policy in the event of an instability. A rule is unstable when it
is enqueued to fire, but a change in the input literal/expression stops the rule from
firing. Stability is a requirement of quasi-delay insensitive circuits. Default mode is
break.

weak-unstable [mode] [Command]
Set the simulator policy in the event of a weak-instability. A rule is weakly-unstable
when it is enqueued to fire, but a change in the input literal (to X, unknown) may
stop the rule from firing. Default mode is warn.

30 HACKT PRSIM Manual

excl-unstable [mode] [Command]
Set the simulator policy in the event of an excl-instability, one that is caused by
enforcement of force-exclusion rings. Default mode is warn.

interference [mode] [Command]
Set the simulator policy in the event of interference. A rule is interfering when
it is fighting an opposing (up/down) firing rule. Interference will always put the
conflicting node into an unknown state. Non-interference is a requirement of quasi-
delay insensitive circuits. Default mode is break.

weak-interference [mode] [Command]
Set the simulator policy in the event of weak-interference. A rule is weakly interfering
when may fight an opposing (up/down) firing rule. Weak-interference will put the
conflicting node into an unknown state. Default mode is warn.

invariant-fail [mode] [Command]
Set the error-handling policy for certain invariant violations, when an invariant ex-
pression evaluates to false.

invariant-unknown [mode] [Command]
Set the error-handling policy for possible invariant violations, i.e. when an invariant
expression evaluates to X.

assert-fail [mode] [Command]
Set the error-handling policy for when the assert command fails.

channel-expect-fail [mode] [Command]
Set the error-handling policy for when the a channel encounters a value different from
was expected.

checkexcl-fail [mode] [Command]
Set the error-handling policy for when an exclusion check fails.

keeper-check-fail [mode] [Command]
Set the error-handling policy for when an exclusion check fails.

mode [md] [Command]
Without arguments, reports the current simulation policies on logic violations. With
argument md, run is the default set of policies, reset is only different in that
weak-unstable is ignored. reset is useful during the initalization phase, when
some rules may transiently and weakly interfere, as they come out of unknown state.
paranoid causes the simulation to break on weak-instabilities and weak-interferences,
which is useful for debugging. fatal causes the simulation to exit immediate with
non-zero exit status, which is useful for non-interactive batch testing. Caution: fatal
also causes the following diagnostic conditions to exit fatally: invariant-fail, invariant-
unknown, assert-fail, channel-expect-fail, excl-check-fail

policy default reset run paranoid fatal
interference break break break break fatal
weak-interference warn ignore warn break fatal

Chapter 3: Commands 31

unstable break break break break fatal
weak-unstable warn warn warn break fatal
assert-fail fatal - - - fatal
excl-check-fail fatal - - - fatal
channel-expect-fail ~ fatal - - - fatal
invariant-fail break - - - fatal
invariant-unknown warn - - - fatal

Two additional commands control the behavior of unstable rules. These are particularly
useful for simulating circuits that expect to glitch, such as synchronous (clocked) circuits.

unstable-unknown [Command]
When set, this causes unstable rules to be result in an unknown value on the output
node. The opposite effect is the unstable-dequeue command.

unstable-dequeue [Command]
When set, this causes unstable rules to be dequeued from the event queue. The
opposite effect is the unstable-unknown command. This option also allows events
that drive a node to "X’ in the queue to be overtaken and replaced with known values
if the fanin pull of the node is resolved to a non-interfering direction before the X’
event on the node is dequeued.

Instabilities that are caused by force-exclusion rings are treated with their own corre-
sponding options.

excl-unstable-unknown [Command|
When set, this causes rules that are cancelled by force-exclusive rings to transition to
an unknown value on the output node. The opposite effect is the excl-unstable-
dequeue command.

excl-unstable-dequeue [Command]
When set, this causes unstable rules due to force-exclusion to be dequeued from the
event queue. The opposite effect is the excl-unstable-unknown command.

Some additional commands are available for examining and controlling some internal
lookup table caching. Most users won’t need to worry about these.

frame-cache-half-life [int] [Command]
Sets the period (in event count) at which the internal cache of footprint frames
(lookup-tables) should be aged.

frame-cache-halve [Command]
Manually age the cache, as if a half-life period elapsed. One typically never needs to
do this unless the memory usage has gone out of hand. The output reports the total
amount of weight lost in the cache, which is meaningless unless you know how the
cache works.

frame-cache-dump [Command]
Print the contents of the global footprint-frame cache. Really only intended for mem-
ory diagnostics.

32 HACKT PRSIM Manual

3.8 tracing Commands

Checkpointing is useful for saving the state of the simulator, which allows one to interrupt
and resume long simulations, and also examine points of failure in detail.

save ckpt [Command]
Saves the current state of the production rules and nodes into a checkpoint file ckpt.
The checkpoint file can be loaded to resume or replay a simulation later.

load ckpt [Command]|
Loads a hacprsim checkpoint file into the simulator state. Loading a checkpoint will
not overwrite the current status of the auto-save file, the previous autosave command
will keep effect. Loading a checkpoint, however, will close any open tracing streams.

autosave [on|off [file]] [Command]
Automatically save checkpoint upon end of simulation, regardless of exit status. The
reset command will turn off auto-save; to re-enable it with the same file name, just
autosave on. The ‘-a’ command line option is another way of enabling and specifying
the autosave checkpoint name.

The simulator supports trace file recording, using its own trace file format. Unlike
checkpoints, trace files contain information for the entire history of execution, not just the
state at one point in time.

trace file [Command]
Record events to tracefile file. Overwrites file if it already exists. A trace stream
is automatically closed when the initialize or reset commands are invoked. See
the ‘-r’ option for starting up the simulator with a newly opened trace stream. The
format of this trace file is unique to hacprsim.

trace-file [Command|
Print the name of the currently opened trace file.

trace-close [Command]|
Finish writing the currently opened trace file by flushing out the last epoch and
concatenating the header with the stream body. Trace is automatically closed when
the simulator exits.

trace-flush-notify [0]1] [Command]
Enable (1) or disable (0) notifications when trace epochs are flushed.

trace-flush-interval steps [Command]|
If steps is given, set the size of each epoch according to the number of events executed,
otherwise report the current epoch size. This regulates the granularity of saving traces
in a space-time tradeoff.

trace-dump file [Command]|
Produce textual dump of trace file contents in file.

This simulator now has support for recording vector-change-dump (VCD) files.

Chapter 3: Commands 33

ved file [Command]
Record events to ved file. Overwrites file if it already exists. A vector-change-dump
(VCD) stream is automatically closed when the initialize or reset commands are
invoked. See the ‘-r’ option for starting up the simulator with a newly opened trace
stream.

vcd-file [Command]|
Print the name of the currently opened ved file.

vcd-timescale [vall [Command]
Sets/gets the time scale by which real-valued actual times are multiplied to get the
output ved timestamps. This is needed because ved files don’t necessary support
floating-point values, so a scale factor can be used to select a suitable time granularity.
Default: 1.0

vcd-close [Command|
Finish writing the currently opened ved file by flushing out buffered events to file.
VCD files are automatically flushed and closed when the simulator exits.

3.9 debug Commands

This section is reserved for commands that are only useful for debugging the simulator.
Some commands that end in ~debug have already been mentioned in the other sections.

check-structure [Command]
Check internal graph/tree/map data structures for consistency and coherence.

check-queue [Command]
Check internal event queue (as seen by queue) for inconsistencies, such as missing
back-links, multiply referenced nodes... (Because the simulator was not perfect.)

memstats [Command]|
Show memory usage breakdown of the simulator.

process—id name [Command]|
Just prints the internal process ID referenced by name.

node-id name [Command]|
Just prints the internal node ID referenced by name.

dump-node node [Command|
Print internal structure information about the named node for debugging.

Chapter 4: Execution

4 Execution

This chapter describes the internal event-driven execution algorithm.

35

Chapter 5: Diagnostics 37

5 Diagnostics

Over the course of simulation, one is likely to encounter various diagnostic messages. This
chapter describes some of the message one might encounter in simulations.

5.1 Interactive Diagnostics

WARNING: pending event for node ‘$1’; ignoring request.

The above message is displayed whenever the user tries to set a node to a value, when
it is already scheduled to take on a different value in the event-queue. This is a safe-guard
to prevent users from accidentally modifying events that are caused by the circuits. This
message also appears if a user tries to set a node to different values without cycle-ing in
between. To forcefully override the event queue, use the setf command, which will issue
the following warning.

WARNING: pending event for node ‘$1’ was overidden.

Assertion failures are pretty self-documenting.

5.2 Delay-insensitivity Violations

A rule is said to be stable if its guards remain stably true before the output fires. An
unstable rule can have its guards momentarily evaluate true before the output fires. In the
simulation this translates into an event being enqueued, and dequeued (or altered) before
it fires. The simulator uses the policy set by unstable to choose an action when there is
an instability. For any policy except ignore, the simulator prints:

WARNING: unstable ‘$1°+/-
>> cause: ‘$2° (val:$3)

This means that the new transition on node $2 to value $3, caused the guard for rule
$1 + or - to become false while the event was still scheduled.

WARNING: weak-unstable ‘$1°+/-

just means that the instability was caused by the guard expression becoming X, meaning
that there may be an instability.

In the unstable-unknown (default) mode, the previous pending event on $1 will be over-
written to become X, which is a conservative model of what could potentially happen in a
real circuit. The alternative is to use the unstable-dequeue policy, which simply dequeues
the unstable rule from firing.

Rules are interfering if the pull-up and pull-down rules can both fire at the same time,
i.e. they form a short path between Vdd and GND.

WARNING: interference ‘$1°
>> cause: ‘$2’ (val:$3)

reports the latest rule that turned on to cause interference. Usually this means that there is
an error in the production rules. Take a look at fanin-get $1 to see which subexpressions
in the rules are on.

A weak-interference occurs when an X is fighting a 1 or X pull. This can frequently occur
transiently during reset, when nodes are still coming into known values. mode reset can
be used to ignore these, for example, during the reset phase.

38 HACKT PRSIM Manual

5.3 Exclusion Violations

The production rules can be annotated with one class of invariant directives for mutual
exclusion: exclhi and excllo. These check at run-time that mutual exclusion among rings
of nodes is maintained throughout execution. They assume that X values of nodes are safe
and do not cause violations. (Implementation note: each ring’s exclusion state is actually a
single boolean value, one bit of a long bit-field.) A violation of exclusion will result in the
following message:

ERROR: exclhi/lo violation detected!

ring-state:

nodel : vall

node2 : val2

but node ‘$1’ tried to become $2.

The simulator’s excl-check-lock state is no longer coherent;
do not bother trying to continue the simulation,

but you may further inspect the state.

You probably want to disable excl-checking with ‘nocheckexcl’
if you wish to continue the simulation.

This just identifies participants of the ring that is violated, and the last member that
tried to fire. Since the data structure for the ring locks does not support counting, you will
have to disable exclusion checking with nocheckexcl to continue. Debugging the state of
the simulation at the time of violation is highly recommended. (Use backtrace and why.)

5.4 Channel Diagnostics

Typically when a channel is configured as a source, the data-rails have no fanin from the
production rules, and the acknowledge is driven by the production rules. When this is not
the case, the simulator issues a warning:

Warning: channel acknowledge ‘$1.a/e’ has no fanin!

Warning: channel data rail ‘$1° ($2,$3) has fanin.
While this is not fatal, it usually indicates a user-error in configuration.

Likewise, sinks expect to have data rails driven by production rules, and the acknowledge
fanout to production rules.

Channels also expect data rails to behave sanely, maintaing mutual exclusion within
each data bundle. Violation will produce:

Channel data rails are in an invalid state!
In channel ‘$1’, got $2 high rails, whereas only $3 are permitted.

This is similar in meaning to exclusion violations.

TODO: this section doesn’t exhaust the list of diagnostic message. Add as needed.

5.5 Fatal Diagnostics

In the worst-case scenario, the simulator may enter an invalid state where some invariant
(assertion) no longer holds. (This can indicate some corruption of data structures, for

Chapter 5: Diagnostics 39

instance.)

If you see such an internal simulation error (ISE), calmly back away from the

computer and file a bug-report.

Internal simulator error: in some_function at some_file:line:

*okk
*okk
*okx
*okk
*okk

Please submit a bug report including version

"HACKT-...", VERSION,

(preferably reduced) test case, steps to reproduce, and configuration,]]
if appropriate, to <email@address>.

This program will now self-destruct. Thank you, and have a nice day.j}

Chapter 6: Co-simulation 41

6 Co-simulation

One may desire to run hacprsim with another simulator. This chapter describes ways in
which this can be accomplished.

6.1 Verilog PLI Setup

Popular commercial tools sometimes provide an interface for mixing simulators. In this
section, we describe how hacprsim can be integrated with Synopsys’ VCS Verilog Simulator.
The interface they provide is called VPI for Verilog PLI (Programming Language Interface).

All of the functionality of the hacprsim is provided in the ‘libhacktsim.la’ library.
If you’ve built the HAC tools with shared libraries, then all the necessary libraries should
already be available in your installation path.

The first step is to enable support for building a plug-in to be loaded into the VPI. During
the configure step, pass the option: --with-vpi=/path/to/vpi/development-files

./configure --with-vpi=/usr/local/cad/synopsys/vcs

The path should point to one directory up from where the C headers reside. (Basically
exclude the /include from the path argument, as it is automatically appended.) configure
checks for ‘vpi_user.h’ in the given path. If it is found, then compilation will create a
module for VCS’s VPI, ‘vpihacprsim.1la’ (which is installed with the actual .so0/d11/dylib
shared library). This configuration check also looks for vcs in the path; vcs is used to
compile Verilog into a simulation executable.

Disclaimer: the following instructions are taken from the author’s trials, and do not
necessary reflect the actual documented use. Consult the vendor’s VPI documentation for
more information.

To enable VPI in the VCS compiler, pass ‘“+vpi’ to the vcs command.

To specify the prsim module, pass: ‘-use_vpiobj /prefix/lib/hackt/vpihacprsim.so’l]
and ‘-L/prefix/lib/hackt’. The ‘-L’ flag is forwarded to the linker used by VCS in the
final stage of compilation, and is also required at run-time for finding dependent shared
libraries. The method described here uses a dynamic library (plug-in module), however
a static library could also suffice, as long as all symbols were resolved at link time.
Dependent libraries should be linked with the ‘-1’ option which is forwarded to the linker.

VCS produces an executable, say ‘simv’, which is dynamically linked to
‘vpihacprsim.so’. If the HAC libraries do not already reside in one of the default run-time
library search paths (searched by 1d.so), then you must help simv find dependent libraries
by passing the same linker flags through LD_LIBRARY_PATH.

sh$ LD_LIBRARY_PATH=/prefix/lib/hackt:$LD_LIBRARY_PATH ./simv

csh), env sh$ LD_LIBRARY_PATH=/prefix/lib/hackt:$LD_LIBRARY_PATH ./simv

6.2 VPI Basics

Now that you’ve setup your VCS compilation environment to link in the hacprsim library.
It’s time to connect your Verilog instances to hacprsim. This section walks you through
the basic steps.

42 HACKT PRSIM Manual

The ‘vpihacprsim.so’ object you linked in to your simulation executable defines some
new functions that one can call from Verilog. The first thing you should do is tell VCS
what HAC circuit you are co-simulating.

$prsim_options optstring [Function]
Sets the command-line options to be used for hacprsim co-simulation. This should
be done before the call to $prsim().

$prsim obj [Function]
Loads HAC object file obj for hacprsim co-simulation. The object file need not
be compiled through the allocation phase, the library will automatically compile it
through the allocation phase for you if needed.
initial
begin
$prsim_options("-f fast-weak-keepers"); // this is optiomal
$prsim("my_hac_circuit.haco-a");

end

The named object file should be compiled from HAC source. Though the object file doesn’t
not needed to be compiled through the allocation phase, it is recommended to catch errors
as early as possible. In any case, the hacprsim library will automatically compile the object
file further if needed. It is important to load this in the initial block before any further
actions are done with hacprsim. Before running the simulation executable, you need to
make sure that the object file loaded by $prsim() exists. (Otherwise the simulation will
fail with a thrown exception, showing a stack dump.)

Continuing in the initial block, you can make connections between Verilog and
hacprsim. Suppose your HAC file instantiates the following:

defproc inv(bool a, b) { prs { a => b- } }
inv foo, bar;

You could write connections in Verilog with the following functions:

$to_prsim vname pname [Function]
Establish a connection from Verilog signal vname to hacprsim signal pname. When
vname changes value, hacprsim will be updated accordingly. This command should
be invoked prior to any events in simulation.

$from_prsim pname vname [Function]
Establish a connection from hacprsim signal pname to Verilog signal vname. When
pname changes value in hacprsim, the Verilog simulator will be notified accordingly.

A signal can go both ways between the simulation environments, as in the following example:

module TOP;
reg a, b, c;

initial

begin
$prsim("my_hac_circuit.haco-a");
$to_prsim("TOP.a", "foo.a");

Chapter 6: Co-simulation 43

$from_prsim("foo.b", "TOP.b");
$to_prsim("TOP.b", "bar.a");
$from_prsim("bar.b", "TOP.c");
end
endmodule

"TOP.b" is both driven by hacprsim and also fans out to circuits in hacprsim.

There are other useful functions in the hacprsim VPI library.

$prsim_cmd cmd [Function]
Runs an arbitrary command cmd (string) that would normally be interpreted by
hacprsim. This is the one command to rule them all, the last command you will ever
need.

$prsim_default_after time [Function]
Set the default delay for unspecified rules to time, in hacprsim’s time units (unitless).
This is analogous to the command-line ‘-D time’ option. This command should be
invoked before loading the object file ($prsim()) that initializes the state of the
simulation.

$prsim_sync [Function]
Synchronize callbacks with current hacprsim event queue. This is needed because
some $prsim_cmd commands may introduce new events into the event queue, which
requires re-registration of the callback function with updated times.

Update: this command is now deprecated because now all $prsim_cmd calls automat-
ically re-synchronize the event queues, as a conservative measure.

The following functions are deprecated and should be replaced with $prsim_cmd ().

$prsim_set node val [Function]
Sets a node in hacprsim to val. Synonymous with $prsim_cmd("set node val");.

$prsim_get node [Function]
Prints value of node in hacprsim. Synonymous with $prsim_cmd("get node") ;.

$prsim_watch node [Function]
Register a prsim-driven node watch-point. Synonymous with $prsim_cmd("watch
node") ;.

$prsim_mkrandom v [Function]

For v 1, synonymous with $prsim_cmd("timing random") ;. For v 0, synonymous
with $prsim_cmd("timing after") ;.

$prsim_resetmode v [Function]
For v 1, synonymous with $prsim_cmd("mode reset") ;. For v 0, synonymous with
$prsim_cmd ("mode run") ;.

The following sections walk you through examples of co-simulating hacprsim with VCS.
The author highly recommends copying these examples to run them and study them.

44 HACKT PRSIM Manual

6.3 VPI Debugging

We provide a few commands to help debugging connectivity and communication between
prsim and the host Verilog simulator.

$prsim_confirm_connections [Function]
When this is called before any $to_prsim/$from_prsim connections are made, each
connection will be verbosely confirmed in the output.

$prsim_verbose_transport arg [Function]
If arg is 1 (or non-zero), then every value that is transported between verilog and
prsim will be verbosely reported.

6.4 VPI Example

Several examples are installed in the ‘/prefix/share/hackt/doc/example/ARCH/vpiprsim-inverters’]]
directory, where ARCH is the host-triplet of the machine you are running on, as deter-
mined by configure (See hackt version). This example demonstrates several inverters
communicating across the hacprsim and VPI boundary, in a shoelace connection.

Copy the contents of the directory to a temporary directory, and rename
‘Makefile.copy’ (created from template ‘example.mk’) to ‘Makefile’. The Makefile is
already setup to include ‘hackt.mk’ and provides some basic rules for compiling and
running the Verilog simulation. The ‘shoelace.v’ file is compiled to an executable
‘shoelace.vx’ which runs the simulation. ‘shoelace.v’ references ‘inverters.haco-a’,
which is a prerequisite for running (but not compiling) the simulation executable.

make check will run all the necessary steps in order and print the result of running
the executable to ‘stdout’. Note that the invocation of the executable is prefixed with
an environment extension for LD_LIBRARY_PATH. This is not necessary if you have already
included /prefix/lib/hackt (a.k.a. pkglibdir) in your environment.

6.5 VPI with Channels

The same example directory contains an example that uses hacprsim’s channel features
and commands, called ‘channel-source-sink.v’, See Section 3.4 [Channel Commands],
page 12. The HAC source file contains only declarations for a pair of elof2 channels — the
rest is set up in Verilog.

In the Verilog source, we connect the L and R channel rails with delay-elements. Using
$prsim_cmd, we configure L as a source and R as a sink, as one normally would in an
hacprsim session.

Here’s the important part! The channel-reset and channel-release commands inject
events into hacprsim’s event queue, however the host Verilog simulator is not aware of direct
updates to that event queue! (This is also the case when you invoke $prsim_cmd("set
...");.) To notify the Verilog simulator and synchronize its main event queue, we need
to invoke $prsim_sync () immediately after any command that affects the hacprsim event
queue, including channel-reset[-all] and channel-release[-all]. Prior to channel-
release[-all], we also call $prsim_sync () to flush out any remaining events in hacprsim
that have not caught up to the present time.

Until there is any other user-driven change to the hacprsim event queue, there should
be no need to call $prsim_sync() again.

Chapter 6: Co-simulation 45

6.6 Hierarchical co-simulation

The final example demonstrates how to co-simulate with Verilog placeholder definitions in
HAC. This allows one to co-simulate any Verilog definition with circuits anywhere in the
instance hierarchy in HAC.

Suppose you have some Verilog library that contains definitions that you wish to connect
in HAC but simulate in Verilog.

// "lib.v"

module FLIPFLOP(d, q, clk);
in d, clk;
out q;

end module
In HAC one would define a placeholder definition:
defproc FLIPFLOP(bool d, q, clk) { }

and you could instantiate FLIPFLOPs anywhere and everywhere in the circuit hierarchy.
It would be extremely tedious to connect each HAC instance to a corresponding Verilog
instance by hand, using just $to_prsim and $from_prsim calls.

This problem is solved by taking advantage of modularity of Verilog module definitions.

// "lib.v-wrap"

module HAC_FLIPFLOP;
wire d, q, clk;
parameter prsim_name="";
reg [64*8:1] verilog_name;
FLIPFLOP dummy(d, q, clk);
initial begin

#0

if (prsim_name != "") begin
$sformat (verilog_name, "%m");
$from_prsim({prsim_name, ".d"}, {verilog_name, ".d"});
$from_prsim({prsim_name, ".clk"}, {verilog_name, ".clk"});
$to_prsim({verilog_name, ".q"}, {prsim_name, ".q"});

end

end

endmodule

Every Verilog instance of HAC_FLIPFLOP instantiates a local FLIPFLOP and automatically
connect its ports to hacprsim, provided you set the prsim_name parameter using defparam.
The explicit #0 timestamp guarantees that the functions are not called until after initial
statements, when the HAC object file is supposed to be loaded. For every instance of
FLIPFLOP in the HAC hierarchy:

module TOP;

HAC_FLIPFLOP __0();
defparam __O.prsim_name="x.y[0]";
HAC_FLIPFLOP __1Q);

46 HACKT PRSIM Manual

defparam __1.prsim_name="x.y[1]";
HAC_FLIPFLOP __2();

defparam __2.prsim_name="x.q.w";
endmodule

How do you find every instance of FLIPFLOP in the HAC hierarchy? The current method
is to query the allocate-compiled object file:

$ hacobjdump inst_foo.haco-a > inst_foo.objdump 2>&1

$ sed -n ’/Globally allocated state/,$p’ inst_foo.objdump | \
sed -n ’/\[global process entries\]/,/\[global.*entries\]/p’ | \
grep "~ [0-9]" | cut -f5-6 > inst_foo.processes

The resulting ‘inst_foo.proceses’ lists every unique process with its type'. The user can
construct a database of known Verilog types to extract the canonical prsim names of all
Verilog wrapper processes in the HAC namespace. From there, it is trivial to generate
top-level Verilog instantiations of all wrappers.

What if there are a hundred definitions across Verilog libraries? Fortunately, we have
already written such script to convert entire libraries into wrapper definitions.

$ bindir/wrap_verilog_modules_to_hacprsim.awk 1lib.v > lib.v-wrap
Limitations: arrays and buses (in progress), template parameters (not yet).
To use the output file ‘1ib.v-wrap’ in your top-level Verilog file:

‘include "lib.b"
‘include "lib.v-wrap"

module TOP;
// instantiate Verilog wrappers, set their prsim_names

endmodule

If you've copied the example directory already, the target that demonstrates this
process is ‘and_tree.vx-log’. The Verilog library is ‘standard.v’ which begets

‘standard.v-wrap’. ‘and_tree.hac’ instantiates and connects a tree of AND gates which
are defined in the Verilog library. ‘and_tree.v’ includes the library and its wrapper, and
instantiates top-level instances to connect to hacprsim. The simulation stimulus just
toggles some of the input signals to the AND-tree.

6.7 VPI Hacker’s Guide

This section is for documenting development of the VPI hacprsim module. The module
is compiled and installed as a dymamic shared library, a run-time loadable plug-in. The
advantage is that the simulation executable need not link a static copy of the library; nor
does it need to be recompiled for non-ABI changing updates to the library.

How it works...
event queues

breakpoints

! This would much more elegant using the Scheme interface of hacguile.

Chapter 6: Co-simulation

callbacks

synchronization

47

Chapter 7: Tips 49

7 Tips

This section contains the collected wisdom of users of the simulator. Think of this as an
FAQ.

7.1 Interactive mode

Readline completion and history Hopefully, you or your package has built the HACKT
tools with the GNU Readline library. Readline provides numerous line-editing, history, and
completion features that will make the interactive mode much more efficient. The most
basic feature is cycling through history with the up and down arrow keys. Consult the
Readline documentation for details, See Section “Readline” in The GNU Readline Library .

7.2 Scripting

Long simulations. Q: If I have a simulation that is supposed to run infinitely, deadlock-free,
with the cycle command how do I check it non-interactively? (By now you've figured out
that in interactive mode, you can interrupt the simulation with Ctrl-C to give you back
the command prompt, or equivalently, send the process a SIGINT signal.)

A: Instead of cycle, use advance or step or step-event to run for a finite time. Upon
completion of the command, however, one typically wants to verify that the system did not
deadlock. assert-queue will error out if the event queue is empty.

Checkpointing. You can manually save a checkpoint at any time using the save com-
mand, and restore to using the load command. You can also have the simulator automat-
ically take a checkpoint upon exit, regardless of the exit status by using:

autosave on FILENAME
This is particularly useful for analyzing failed simulations that stop in some unexpected

manner. After a failed run, you have a checkpoint that takes you right to the moment of
failure for further examination.

Command Index

Command Index

$from_prsim ...
Bprsim. ..o
$prsim_cmd.
$prsim_confirm_connections.................
$prsim_default_after...................o....
$prsim_get.
$prsim_mkrandom..............oiiiiiiiiiinan.
$prsim_options ...t
$prsim_resetmode......... ...,
$prsim_set......... i
SPrSim_Sync ...
$prsim_verbose_transport
$prsim_watch........ i
Sto_prsim......ooiiiii

addpath
AdVANCE . .t e

allrings-chk.................... ...
allrings-chk-get.............................
allrings-mK ...t
allrings-mk-get..............................
allrules..........ooiiiiiiiiii
allrules-verbose...................iin...
assert ...
assert-fail il
assert-pending............. il
assert—queueiiiiiiiii,
assertn........
assertn-queue.....................a
attributes...........l
autosave........ ...

B

backtrace....... .o
breakpt........ ... i
breaks ...

51
channel-assert-value-queue 19
channel-bd-2p.......... L 14
channel-bd-4p..................... 15
channel-clocked............ ..., 15
channel-close................................ 18
channel-close-all................oouiiinn... 18
channel-continue-on-empty 21
channel-expect, 18
channel-expect-args..................... ... 18
channel-expect-fail 30
channel-expect-file......................... 18
channel-expect-file-loop................... 18
channel-expect-100pcoviiiiininnnnn. 18
channel-get il 16
channel-heed il 18
channel-heed-all.............. 18
channel-ignore............c.coviiiiunnnnnnnnn. 18
channel-ignore-all 18
channel-ledr, 13
channel-1o0g ...t 17
channel-release.............ooiiiiiniiinn.... 21
channel-release-allcoouuunnnn.. 21
channel-report-time......................... 17
channel-resetiiiiiiiiii.. 20
channel-reset-all..................cooi... 20
channel-rsource.............coiiiiiiiiiina., 19
channel-show............ oot 16
channel-show-all............... ..., 16
channel-signed.............cooiiiiiiiinnnn.. 14
channel-sink............ o i il 19
channel-source.............ooiiiunnniinnnn... 19
channel-source-argsoooiinnnnn. 19
channel-source-file......................... 19
channel-source-file-loop 19
channel-source-100p.........covviiiiinnnnn. 19
channel-stop ..., 20
channel-stop-all............................. 20
channel-stop-on-empty.............coouuunnn. 21
channel-timing.................... 19
channel-unsigned................ 14
channel-unwatch....................... 17
channel-unwatchallooouinn, 17
channel-watch..............., 17
channel-watchall............................. 17
check-invariants..................ooiiiiia.. 24
check-queueoooiiiiiiiL, 33
check-structure................iiiiiiii 33
checkexXCl. .. .o 28
checkexcl-fail............. 30
ClOCK=SOUTCe ...\ttt 16
COMMENT . oottt ettt et 7
confirm....... i 27
CYCLe 10

52

D

deqUeue 11
Lo o 9
dump-node.............. ... 33

ECRO. o 7
echo-commandsccoviiniiiinnnnanann.. 8
eval-order.ot 28
eXCePtionsS. 26
excl-unstable.......... ... i 30
excl-unstable-dequeue....................... 31
excl-unstable-unknown....................... 31
EXECUEE .ottt 11
[P 7

fanin 21
fanin-get...... .. 21
fanoutot 21
fanout-get......... ... i 21
feedback.........c i 21
feedback-get il 21
frame-cache-dump...............ooiiina., 31
frame-cache-half-life....................... 31
frame-cache-halve.............. 31
freeze ... 10

Bet . 22
get-driven............l 25
getall ... 23
getcommonports ...ttt 23
getinports......... ..o il 22
getlocal......... ... i 23
getoutports ... 22
BetportsS ... 22

initialize...... ..ot 9
interference i 30
interpret.o 7
invariant-fail.............. 30
invariant-unknown.................coeueeunen... 30

K

keeper-check-fail............................ 30

HACKT PRSIM Manual

MEAS—tAMe . ..ottt ettt 7
MemMSTALS . ot e ettt 33
MOAE .« ottt e 30

No-sStatus.t 25
no-status-driven............., 25
no-status-driven-fanin...................... 25
no-status-interference...................... 25
no-status-weak-interference................ 25
no-unknown-fanout............................ 26
no-unknown-inputs.............. 26
no-unknown-inputs-fanout 26
no-unknown-outputs 26
no-unknown-undriven-fanin.................. 26
No-UNUSEd—NOdES . ..ot it et 26
NObTeakpt ... 11
nobreakptalloviiiiiiiiiiiiiiiian 11
TLOCAUSE « vt ettt ettt ettt e 27
nocheckexcClooiiiini i 28
noconfirm....... 27
node—id....... ... 33
NOTANAOM . . o\ et ettt ettt et e 29
NOLCOUNES . .ottt ettt et 27
nOWatCh—quUeue ..ottt 27
nowatchall......... ..., 27
nowatchall-queue...............ooiiiinnnnnnn. 27

paths 9
POPA. .o 8
precision.......... ...l 7
process—id........................LL 33
pushd 8
PWA . oo 9
Q

QUETE . oottt ettt et 23
QUIt. . 7

TANAOM . o vttt et e 29
TEPEAT « ottt 7
reschedule......... ...t 11
reschedule-from-now...............ccuvueunn.. 11
reschedule-now............ccouiiieinneennnnnn. 11

reschedule-relativeccovieunn.. 11

Command Index

eSO oottt e 9
rings-chk.......... o oo 22
rings-chk-get.......... ... 22
rings-mK............. i 22
rings-mk-geto 22
TULES oottt 22
rules-verbose i 22
S

SV & ittt 32
seedd8 .. 29
S . 10
S L IOW . ottt 10
set-pair-random..................iiia 10
setf e 10
ST i 10
setrf ... 10
SOUTCE &+ et ettt ettt ettt et 9
STAtUS ..ot 25
status-driven............oiiiiiiiiii 25
status-driven-fanin............, 25
status-frozen..........., 25
status-frozen-get............. 25
status-interference......................... 25
status-newline.............., 25
status-weak-interference 25
SteD. 9
step-event............ ...l 10

BCOUNT .« oot 24
BCOUNES ..o 27
AW . 11
TAme o 25
time-fmt....... 27
timing ... 28
ACE ot 32
trace=CloSe .. .viiii 32
trace—dump........... ... 32
trace—file..... ..o 32
trace-flush-interval 32
trace-flush-notify 32

U

UNALlias ..ooiit 8
unaliasall..........ooiiiiiiiiiiii 8
unbreak............. i 11
unbreakall.......... ... il 11
unknown-fanout.............. oo 26
unknown-inputs.......... o oL 26
unknown-inputs-fanout................. 26
UNKNoOwn—-outputs...... ..o 26

unknown-undriven-fanin...................... 26

53
UNSEL .ot 10
unsetall..... ... 10
unstable........... L 29
unstable-dequeue.................oiiiiiiaa, 31
unstable-unknown................ 31
unused-nodes i 26
unused-nodes-get.........................L 26
unwatch........ ..o 27
UPSEt ot 11
\%
VCd. .o 33
VCA=CloSe. .ottt 33
ved-file... ... 33
ved-timescale 33
\%\%
WatCh .o 27
watch-queuel 27
watchall...........l 27
watchall-queue.....................oiinna.. 27
Wwatches 27
weak-interference.......................... .. 30
Weak-TUulesS.ttt 29
weak-unstable............ ool 29
what ... 22
WHO . 22
who-newline 22
WY et 24
why-1 .. . 24
why-1-verbose, 24
Wy =N . 24
why-N-verboseoiiiiiiiiii... 24
Why-not i 24
Why-not-1...... ... i 24
why-not-1-verbose...................... 24
Why-not-=N....... ..o 24
why-not-N-verbose............................ 24
why-not-verbose................... ...l 24
why-verbosel 24
WhY =X 24
Why-X—1 ... 24
why-x-1-verbose............ooiiiiiiiiiien.. 24
why-x-N... 24
why-x-N-verbose............ccooiiiiiiiiaan. 24
Why=—X-Verboseoouiiiiiiiiiiennnnn... 24
X
X-—all o 9
Z
Zerotcounts ...l 27

Concept Index

Concept Index

A

AULOSAVE . . .ot t 3

B

batchmode........... 3

C

channel diagnostics................. ...l 38
checkpoint oo 3, 32
co-simulation.......... ... o ool 41
crash. ... 38

E

exclusion violations................ 38

F

fatal diagnostics............ ... oL 38
force-exclusive rings........... 22, 31

I

instability 37
interactive mode............. il 3
interference................ 37
internal simulation error....................... 38

M

mutual exclusion 38

95
optimization i 3,5
P
PLI .o 41
R
recording traceo, 3
source paths........ ... 3
T
trace file........ .. 3, 32
U
unstablerules oo oL 37
SAZE . v e ettt e e e et 3
\Va
VOD . 33
vector-change-dump o 33
Verilog . ..ooooi 41
VP 41

weak-instability......... ... o oo 37
weak-interference 37

	Introduction
	Usage
	General Flags
	Optimization Flags

	Commands
	Built-in Commands
	General Commands
	simulation Commands
	channel Commands
	info Commands
	view Commands
	modes Commands
	tracing Commands
	debug Commands

	Execution
	Diagnostics
	Interactive Diagnostics
	Delay-insensitivity Violations
	Exclusion Violations
	Channel Diagnostics
	Fatal Diagnostics

	Co-simulation
	Verilog PLI Setup
	VPI Basics
	VPI Debugging
	VPI Example
	VPI with Channels
	Hierarchical co-simulation
	VPI Hacker's Guide

	Tips
	Interactive mode
	Scripting

	Command Index
	Concept Index

