HACKNET : SPICE Netlist Generator

A netlist generator manual

David Fang

This manual describes the usage and operation of HACKT’s hacknet spice netlist generator.
This document can also be found online at http://www.csl.cornell.edu/ fang/hackt/hacknet |
The main project home page is http://www.csl.cornell.edu/ fang/hackt/.
Copyright (©) 2009 Cornell University
Published by ...

Permission is hereby granted to ...

http://www.csl.cornell.edu/~fang/hackt/hacknet
http://www.csl.cornell.edu/~fang/hackt/

Short Contents

T = W N+~

Table of Contents

1 Introduction............. 1
2 Tuatorial......... 3
2.1 Top-level circuits. ... 3
2.2 Subcircuits. 3
2.3 Configuration help 4
3 Language Features.............................. 5
3.1 PRS Supply Override 5
3.2 Instance Supply Override.......... ..., 5
4 USaZeot 7
4.1 Option SUMMATYovi e 7
4.2 Configuration Options.ot 8
5 Algorithms..................................... 15
Concept Index...................................... 17

iii

Chapter 1: Introduction 1

1 Introduction

hacknet is a SPICE netlist generator for the HACKT suite. The input is a HAC file
containing production rules, usually connected through instance hierarchy. The output is a
hierarchical netlist with devices, subcircuits, and instances. The output should be suitable
for SPICE-like circuit simulators.

How it works...

Chapter 2: Tutorial 3

2 Tutorial

This chapter demonstrates the basic usage of hacknet for generating SPICE-netlists. A
complete description of features and options follows in the next chapters.

2.1 Top-level circuits
Write the following HAC file, ‘inv-top.hac’:

bool x, y;
prs {

X => y-
}

Compile the source to an object file:
$ haco inv-top.hac inv-top.haco
$ haccreate inv-top.haco inv-top.haco-c
Generate a netlist:
$ hacknet inv-top.haco-c > inv-top.spice
The resulting output should look like:
My:dn:0 !GND x y !GND nch W=5u L=2u
My:up:0 !'Vdd x y !'Vdd pch W=bu L=2u
The resulting netlist produces a set of transistors at the top-level. The !'Vdd and !GND

nodes are implicit power supplies. The default device types are nch for NFETs and pch for
PFETs. Default widths and lengths were chosen because none were specified.

2.2 Subcircuits

Process definitions are emitted as subcircuit definitions, and can be instantiated with the
SPICE X card.

Write the following HAC file, ‘inv-def .hac’:

defproc inv(bool x, y) {
prs {
X => y-
}
}

Compile the source to an object file as before. Since there are no top-level instances, you’ll
need to tell hacknet what type to emit as the top subcircuit.

$ hacknet -T ’inv’ inv-def.haco-c
should produce:

.subckt inv<> IGND !Vdd x y

My:dn:0 !GND x y !GND nch W=5u L=2u

My:up:0 !Vdd x y !Vdd pch W=bu L=2u

.ends
Use of single-quotes around the type argument is encouraged (in fact, only required for
template parameters to protect the <> characters from being interpreted by the shell).

4 HACKT Netlist Generator Manual

Finally, entire hierarchal netlists can be produced by instantiating subcircuit definitions.
Write the following file ‘invs.hac’, and compile it into ‘invs.haco-c’:

import "inv-def.hac";

// pair of inverters
defproc foo(bool a, b, c) {
inv p(a, b), q(b, c);

}

foo bar;
Run hacknet:

$ hacknet invs.haco-c > invs.spice
to produce the following hierarchical netlist.

.subckt inv<> !IGND !Vdd x y

My:dn:0 !'GND x y !'GND nch W=bu L=2u
My:up:0 !Vdd x y !Vdd pch W=5u L=2u
.ends

.subckt foo<> IGND !Vdd a b ¢
xp !GND !Vdd a b inv<>

xq !GND !Vdd b ¢ inv<>

.ends

xbar !GND !Vdd bar.a bar.b bar.c foo<>

In this example, there is a top-level instance of type foo named bar.

2.3 Configuration help

A quick way to list all of the known configuration options with their default values is:

$ hacknet -d
The output can be pasted into a file for modification. To use a configuration file, pass the
‘=c’ option:

$ hacknet -c my.hacknet-conf inv.haco-c > inv.spice

Chapter 3: Language Features 5)

3 Language Features

Some features of the HAC language were added specifically for the sake of netlist genera-
tion. We briefly describe them here, but the reader is referred to the full HAC language
documentation, specifically chapters "Connections" and "PRS".

Recall that every process definition has two implicit ports for the power supply, !GND
and !'Vdd. When unspecified, the default behavior automatically connects transistors and
subcircuits to these primary supplies, hierarchically and recursively. There are two places
where we can override these supplies.

3.1 PRS Supply Override

To override the supplies use to drive production rules (pull-up and pull-down) and pass-
gates, we can write:

prs <myVdd> {
... // These rules use myVdd to pull-up, and !GND for pull-down
}
prs <myVdd, myGND> {
... // Use myVdd to pull-up, myGND to pull-down
}
prs < , myGND> {
... // Use !Vdd to pull-up, myGND to pull-down
}
Rules that balong to a supply domain will use the specified supply node for the drain of
the foot transistor(s), and for the substrate (body) terminal.

prs <myVdd,myGND> {
x&y -> z-
b
// begets:
MO myGND x #0 myGND nch W=b5u L=2u
M1 #0 y z myGND nch W=bu L=2u

Normally, single-supply domain circuits need not be written with explicit production
rule supply overrides. Instead, they can be connected externally to different supplies when
instantiated, which is described in the next section.

3.2 Instance Supply Override

All processes have implicit primary supply ports !Vdd and !GND, that are accessed differently
than normal ports. By default, a process instance will connect its primary supply ports to
those of its immediate parent process. To specify a different supply, one can write:

bool myVdd, myGND, x, y;

inverter foo;

foo $(myGND, myVdd) ;

foo (x, y);

inverter yoyo(x, y);

6 HACKT Netlist Generator Manual

yoyo $(myGND, myVdd) ;

inverter bar $(myGND, myVdd) ;
bar (x, y);

inverter bq $(myGND, myVdd) (x, y);

Either supply port may be ommitted to use the corresponding default primary supply.
Alert: note that the supply ordering for instances is GND, Vdd, whereas for production
rules, it is Vdd, GND.

Chapter 4: Usage 7

4 Usage

This chapter describes hacknet’s command-line options, and configuration file options.

Usage: ‘hacknet [options] obj-file’
The resulting netlist is printed to ‘standard-out’, so it is common practice to redirect

it to a file. Diagnostic messages will appear in ‘standard-error’.

4.1 Option Summary

For options that take an argument, the space between the flag and the argument is optional.

-c file [User Option]

Parse configuration options from file. Options are of the form key=values with no
space characters separating the =. Values may be singleton, comma-separated, or
omitted. The same options can also be passed in through the command-line via ‘-£’.
This option is repeatable and cumulative. See Section 4.2 [Configuration Options],
page 8.

file [User Option]
Backwards compatibility option. Parse configuration options from file. Options are
of the form type key value. type may be ‘int’, ‘real’; or ‘string’. Values are only
singleton. The same options can also be passed in through the command-line via ‘-F’.
This option is repeatable and cumulative. See Section 4.2 [Configuration Options],
page 8.
[User Option]
Print the values of all configuration values to ‘stdout’ and exits.
options... [User Option]
Parse configuration options from options. Options are of the same key-value format
as in the configuration file, see option ‘-c’. Options are space-separated instead
of newline-separated. This option is repeatable and cumulative. See Section 4.2
[Configuration Options|, page 8.
option [User Option]
Backwards compatibility option. Parse configuration options from options. Options
are of the same key-value format as in the configuration file, see option ‘~C’. Unlike
‘~f’ option, only one parameter can be specified at a time. This option is repeatable
and cumulative. See Section 4.2 [Configuration Options]|, page 8.
[User Option]
Help. Print usage and exit.
[User Option]
Describe all configuration options with default values and exit. See Section 4.2
[Configuration Options|, page 8. See also the installed documentation for
‘hacknet.info,html,pdf’.
path [User Option]

Append path to the list of paths to search for including and referencing other config
files. See also the ‘config_path’ configuration option.

8 HACKT Netlist Generator Manual

-t type [User Option]
Instead of using the top-level instances in the source file, instantiate one instance
of the named type, propagating its ports as top-level globals. In other words, use
the referenced type as the top-level scope, ignoring the source’s top-level instances.
Convenient takes place of copy-propagating a single instance’s ports. See also the ‘-T’
option.

=T type [User Option]
Instead of using the top-level instances in the source file, instantiate one lone instance
of the named type, at the top-level, ignoring the source’s top-level instances. Unlike
the ‘-t’ option, the contents of named type type do not get unrolled directly into the
top-level scope. This instance’s ports will be unconnected, and the instance’s name
is unspecified (because you shouldn’t care!). This option also implies ‘emit_top=0’.
Current limitation: can only specify one type for now.

-V [User Option]
Print version and build information and exit.

4.2 Configuration Options

There are two ways to pass configuration options to hacknet. One is through the ‘-f’
option on the command-line, the other way is to pass them in through a configuration file
with the ‘-=c’ option. The option value specifications share the same syntax: key=values
where values can be blank, a single value, or a comma-separated list of values. A key-value
specifier is not permitted to have spaces in the string! The values themselves cannot contain
comma characters.

In a configuration file, blank lines are ignored, as well as lines that begin with # (pound).
Where boolean values are expected, pass 0 for false, or 1 for true.

The following parameters are used to manage distributed configuration files. This allows
one to create incrementally different configurations.

config_path paths [User Option]
Append to list of paths for searching for configuration files, exactly like the ‘-I’
command-line option. Reminder: paths are comma-separated.

config file files [User Option]

config_file_compat files [User Option]
Import other configuration file(s), exactly like the ‘~¢’ and ‘-C’ command-line op-
tions. File are searched using the configuration search path. The ‘_compat’ variation
processes old-style configuration files.

The following parameters affect emitted device sizes and units.

lambda (real) [User Option]
Technology-dependent scaling factor for device lengths and widths, the multiplier
factor applied to lengths and widths specified in PRS. Default: 1.0

length_unit (string) [User Option]
Suffix-string to append to emitted length and width parameters. Can be a unit such
as "u" or "n", or exponent such as "e-6" or "e-9". Default: u (micron)

Chapter 4: Usage 9

area_unit (string) [User Option]
Suffix-string to append to emitted area values. Can be a unit such as "p" (for pico),
or exponent such as "e-6" or "e-12". Alert: this must be set consistently with respect
to length_unit. Default: p (pico, micron-squared)

capacitance_unit (string) [User Option]
Suffix-string to capacitance values. Can be a unit such as "p" (for pico), or exponent
such as "e-6" or "e-12". Default: (blank)

resistance_unit (string) [User Option]
Suffix-string to resistance values. Default: (blank)

inductance_unit (string) [User Option]
Suffix-string to inductance values. Default: (blank)

std_n_width (real) [User Option]
Default width (in lambda) for NFETSs used in logic, where unspecified.

std_p_width (real) [User Option]
Default width (in lambda) for PFETSs used in logic, where unspecified.

std_n_length (real) [User Option]
Default length (in lambda) for NFETSs used in logic, where unspecified.

std_p_length (real) [User Option]
Default length (in lambda) for PFETSs used in logic, where unspecified.

stat_n_width (real) [User Option]
Default width (in lambda) for NFET's used in keepers (staticizers), where unspecified.

stat_p_width (real) [User Option]
Default width (in lambda) for PFETSs used in keepers (staticizers), where unspecified.

stat_n_length (real) [User Option]
Default length (in lambda) for NFET's used in keepers (staticizers), where unspecified.

stat_p_length (real) [User Option]
Default length (in lambda) for PFETSs used in keepers (staticizers), where unspecified.

min_width (real) [User Option]
Minimum transistor width in lambda.

min_length (real) [User Option]
Minimum transistor length in lambda.

max_p_width (real) [User Option]
Maximum PFET width.

max_n_width (real) [User Option]
Maximum NFET width.

10 HACKT Netlist Generator Manual

User Option
User Option

nfet_svt (string {
[User Option
[
[

)

nfet_lvt (string)

nfet_hvt (string)

pfet_svt (string) User Option

pfet_1lvt (string) User Option

pfet_hvt (string) [User Option
Override the default device type names for NFETs and PFETS along with their
non-standard threshold voltage variants.

]
]
]
]
]
]

The following options are related to transistor parasitics.

emit_parasitics (bool) [User Option]
If set to 1, include source and drain area and perimeter parameters for every transistor
Default: 0

fet_perimeter_gate_edge (bool) [User Option]

When estimating parasitics, when this is true, include the gate edge of the rectangle
when estimating perimeter values for parasitic capacitances. Including the gate edge
length results in increased capacitance, which can be pessimistic. Default: 1

fet_diff_overhang (real) [User Option]
When computing parasitics, this is the length of diffusion overhang past the end of the
drawn transistor, in lambda. Typically, this value comes from the minimum diffusion
overhang rule in your process’s DRC rule deck. Default: 6.0

fet_spacing_diffonly (real) [User Option]
When computing parasitics, this is the length of diffusion between adjoining tran-
sistors, in lambda. For the purpose of computing parasitic capacitances on shared
nodes, this value should actually be half of the minimum spacing between stacked
transistors according to your technology’s DRC rule deck. This effectively assigns
half of the diffusion area to the device on either side. Default: 4.0

hacknet provides several options for formatting the emitted output (because not all
SPICEs are created alike).

print (bool) [User Option]
If set to 0, suppress normal netlist output. Default: 1

output_format style [User Option]
Pseudo-option: preset bundle of options for formatting output. Valid choices of style
are: spice, spectre.

emit_top (bool) [User Option]
If set to 1, include the top-level instances in the netlist output. Setting this to 0
is useful for producing a library of subcircuit definitions for every type that was
instantiated, recursively w.r.t dependencies. Default: 1

nested_subcircuits (bool) [User Option]
If this option is set to 1, then emit local subcircuits as nested definitions within their
used definitions. Not sure which variants of SPICE support this. Default: 0

Chapter 4: Usage 11

empty_subcircuits (bool) [User Option]
If this option is set to 1, then emit empty subcircuits, i.e. subcircuits with no de-
vices. Probably want to force unused port nodes to be emitted in empty subcircuit
definitions, option ‘unused_ports’. Default: 0

subcircuit_definition_style style [User Option]
e spice - .subckt CKTends
e spectre - subckt CKT ... ends CKT

instance_port_style style [User Option]
e spice - inst ports ... type
e spectre - inst (ports ...) type

node_ports (bool) [User Option]

If set to 1, include bools (nodes, wires) in port lists for subcircuit definitions and
instances. This is enabled with ‘output_format=spice,spectre’. Default: 1

struct_ports (bool) [User Option]
If set to 1, include user-defined structs and channels in port lists for subcircuit defi-
nitions and instances. This is enabled with ‘output_format=verilog’. Default: 0

unused_ports (bool) [User Option]
If this option is set to 1, then consider all ports used even if they are unconnected,
for the purposes of emitting port lists. This is useful ‘empty_subcircuits’, which
would result in subcircuits with no ports. Default: 0

named_port_connections (bool) [User Option]
If set to 1, emit instances’ port connections using .port(local) syntax, otherwise
emit port connections positionally. Most spice-like formats support only positional
ports, but the Verilog language supports both. Named port connections makes the
output more verbose, but less prone to positional connection errors. Default: 0

prefer_port_aliases (bool) [User Option]
Instead of using default heuristic for choosing shallowest or shortest canonical name,
prefer any equivalent port name, if applicable. This can make netlists and simulation
results easier to grok. Default: 0

preferred_names (strings) [User Option]
Declare local node names that should always take precedence over canonical shortest-
names and preferred-port-aliases. This is useful for supply nodes that appear in
structures, that are passed around globally. The names passed to this list should be
pre-mangled, using the default struct-member-separator, $. Default: (blank)

emit_port_summary (bool) [User Option]
If set to 1, prints out node port information, including signal direction. Default: 0

emit_node_aliases (bool) [User Option]
If set to 1, print a sets of node aliases (equivalent names). Default: 0

12 HACKT Netlist Generator Manual

emit_node_caps (bool) [User Option]
If set to 1, print a cumulative capaticance components for every local node. Compo-
nents include: total diffusion perimeter length, total diffusion area, total gate area,
and total wire area. Default: 0

emit_node_terminals (bool) [User Option]
If set to 1, print for every node, the terminals to which it connects on all devices.
This is useful for debugging the redundant graphical representation used for graph
traversals and analysis. Default: 0

transistor_prefix (string) [User Option]
String to print at the beginning of a transistor instance. For spice, this is usually the
M card. Default: M

subckt_instance_prefix (string) [User Option]
String to print at the beginning of a subcircuit instance. For spice, this is usually the
x card. Default: x

pre_line_continue (string) [User Option]
String to print before emitting a continued line. Default: (none)

post_line_continue (string) [User Option]
String to print after emitting a continued line. Default: +

comment_prefix (string) [User Option]
String to print before whole-line comments. Default: "* "

auto_wrap_length (int) [User Option]
If set to > 0, automatically wrap lines that would be longer than the given length.
This is useful when there are external limits to line length that need to be accounted
for. Default: 0 (no-wrap)

The following options are used for name mangling type-names and instance-names. By
default, no mangling is done to keep the output (more) human-readable.

mangle_underscore (string) [User Option]
Substitute the ‘_’ (underscore) character with another string, which may contain more
underscores. Alert: It is essential to set this appropriately if underscores are to be
used in other mangling replacement strings.

mangle_process_member_separator (char) [User Option]
String used to separate members of process instances. e.g., the ‘. in ‘a.b’ usually
denotes that b is a member of typeof(a). Default: .

mangle_struct_member_separator (char) [User Option]
String used to separate members of datatype and channel instances. Default: .

mangle_array_index_open (string) [User Option]
Mangle the ‘[’ character with a replacement string.

mangle_array_index_close (string) [User Option]
Mangle the ‘]’ character with a replacement string.

Chapter 4: Usage 13

mangle_template_open (string) [User Option]
Mangle the ‘<’ character with a replacement string.

mangle_template_close (string) [User Option]
Mangle the ‘>’ character with a replacement string.

mangle_template_empty (string) [User Option]
Mangle the ‘<>’ sequence with a replacement string. This is applied before < and >
are mangled.

mangle_parameter_separator (string) [User Option]
Mangle the ¢,’ character with a replacement string.

mangle_parameter_group_open (string) [User Option]
Mangle the ‘{’ character with a replacement string.

mangle_parameter_group_close (string) [User Option]
Mangle the ‘}’ character with a replacement string.

mangle_scope (string) [User Option]
Mangle the ‘::’ sequence with a replacement string. This is applied before : is
mangled.

mangle_colon (string) [User Option]

Mangle the ‘:’ character with a replacement string.

mangle_internal_at (string) [User Option]
Mangle the ‘@’ character (designating named internal node) with a replacement string.

mangle_auxiliary_pound (string) [User Option]
Mangle the ‘#’ character (designating auxiliary node) with a replacement string.

mangle_implicit_bang (string) [User Option]
Mangle the ‘!’ character (designating implicit supply node) with a replacement string.

mangle_double_quote (string) [User Option]
Mangle the ‘"’ character (from template parameter strings) with a replacement string.

mangle_escaped_instance_identifiers (bool) [User Option]
Verilog-style escaped identifiers. Wrap all instance names with slash and a space, e.g.
\foo[0] . This is enabled for ‘output_style=verilog’ by default. Default: 0

mangle_escaped_type_identifiers (bool) [User Option]
Verilog-style escaped identifiers. Wrap all type names with slash and a space, e.g.
\foo[0] . This is disabled for ‘output_style=verilog’ by default. Default: 0

emit_mangle_map (bool) [User Option]
If set to 1, print a list of manglings in comments. Default: 0

reserved_names (strings) [User Option]
Amend the set of names that should be rejected from normal use in the netlist because
they have special meaning to other back-ends. Issuing a blank value will clear out all
previous values. Comparison is done using the post-mangled names. Default: (blank)

14 HACKT Netlist Generator Manual

Option policies control the behavior of certain diagnostics. Policy options accept the
values "ignore", "warn", or "error".

unknown_option (string) [User Option]
Set error-handling policy when encountering unknown configuration options. Default:
warn

internal_node_supply_mismatch (string) [User Option]

Set error-handling policy when an internal node is used in a different supply domain
than the one it was defined in. Default: warn

undriven_node (string) [User Option]
Set error handling policy for subcircuits that find nodes that are neither used (con-
nected to source, gate terminals) but not driven (connected to drain terminal) nor
coming from subcircuit port. This check is always skipped for top-level circuits. De-
fault: warn

case_collision (string) [User Option]
Set error handling policy for names that collide when case is ignored (insensitive). For
this policy warnings are promoted to errors; use ignore to completely disable. If the
value is anything but ignore, then the set of reserved names will also be transformed
when detecting collisions. Default: warn

non_CMOS_precharge (string) [User Option]
Set the error handling policy for precharge expressions that are written non-CMOS,
i.e. not fully-restoring. (for example, using an NMOS expression to pull-up an internal
node in an NMOS stack) Such nets will only charge or precharge to 1 Vt from the
supply rail. Be very careful with this option, it allows you to write nonsense like ‘a
&{+x & "y} b & ¢ => o-’". Default: warn

below_min_width (string) [User Option]
Set the error handling policy when a transistor width is clamped to the minimum
width (from configuration). Default: warn

Chapter 5: Algorithms 15

5 Algorithms

This chapter describes some of the internal algorithms for netlist generation by hacknet.
Hackers may find this informative for extending the functionality of netlist generation.

Concept Index

Concept Index

A

algorithms....... o 15
command-line i 7
configuration.............. .. i 7,8
E

escaped identifiers........... ... i, 13
F

flags. .o 7
formatting.............o i 10
I

instance supply override 5
introduction.......... ... o it 1
L

lambdao 8
language features......... oL, 5
M
mangling........... .o il 12

17
N
name-manglingoooiiiiiiiiiaan. 12
named Ports..........o.eiiiiiiiiii 11
OPLIONS . . oot 7
P
parasitics............ i 10
process supply override 5
Spectre-formatting..........l 10
SPICE-formatting, 10
supply override i 5
T
tutorial 3
USAZE e« v v v e ettt et e e e 7

	Introduction
	Tutorial
	Top-level circuits
	Subcircuits
	Configuration help

	Language Features
	PRS Supply Override
	Instance Supply Override

	Usage
	Option Summary
	Configuration Options

	Algorithms
	Concept Index

