HACKT CHPSIM

A simulator manual

David Fang

This manual describes the usage and operation of HACKT’s chpsim simulator.
This document can also be found online at http://www.csl.cornell.edu/ fang/hackt/hacchpsin.|J]
The main project home page is http://www.csl.cornell.edu/ fang/hackt/.
Copyright (©) 2007 Cornell University
Published by ...

Permission is hereby granted to ...

http://www.csl.cornell.edu/~fang/hackt/hacchpsim
http://www.csl.cornell.edu/~fang/hackt/

Short Contents

List of Figureso v v e 1
1 Introduction e 3
2 U . e 5)
3 Tutorial. 9
4 Commands 13
5 Extending the simulator........... 21
6 Event-driven Execution, 29
7 Standard Library Functions............................ 31
Command Index....... ... 37
Variable Index o oo e 39

Concept Index e 41

Table of Contents

List of Figures 1
1 Introduction........... 3
1.1 HiStOTy «ooe et 3

2 Usage......ooiiii 5
2.1 Option SUMMATY .« oottt ettt et 5)
2.2 General Flags. ... 6
2.3 Graph Generation...............ooiiiiiiiiiiiie i 7

3 Tutorial...... 9
4 CommandsS.o i 13
4.1 builtin commandsSoouiiiii 13
4.2 general commands ...t 15
4.3 info commandsS.t 16
4.4 modes commands 17
4.5 simulation commandsS.iiii 17
4.6 tracing commandsiiiiiiiii e 18
4.7 view commMandsS.t 19

5 Extending the simulator...................... 21
5.1 CHP Function Calls. ... 21
5.2 Shared Module Creationcouuuiiiieann.. 22
5.2.1 Compiling module sources...............cooiiiiiiiii.. 22

5.2.2 Linking module libraries.............o L 24

5.3 Run-time Module Loading i, 26
5.4 Run-time Diagnosticso 26
5.0 An Example ... 26
5.6 Global Initialization...........oiiii i 27
5.7 Module Rationale......... 27

6 Event-driven Execution....................... 29
6.1 Event ordering...........c.oiiiiiiii 29

6.2 THIIE .o oot e e 30

iii

iv HACKT CHPSIM Manual

7 Standard Library Functions 31
7.1 Function Descriptions.......... ..o 31
7.1.1 DiIiagnostiCs ...ttt 31

7.1.2 Conditionals ... 31

T L3 SETINgS . v v ettt 31

7.1.4 Input/Outpub.......oooiii 32

7.1.5 Operating System Library..........., 34

7.1.6 Bit-manipulation Library............. L 34

7.2 Library Use Example....... ..o i, 35
7.3 Function Renaming oo i i 35
7.4 Library Organization........... ... 35
Command Index................................... 37
Variable Index................. 39

Concept Index.............oiiiiiiiiii. 41

List of Figures

List of Figures

Chapter 1: Introduction 3

1 Introduction

chpsim is a simulator for the CHP (Communicating Hardware Processes) language, which
is based on Hoare’s CSP (Communicating Sequential Processes) C. A. R. Hoare. Com-
municating sequential processes. Communications of the ACM. 21(8):666-667, 1978.. To
distinguish this implementation from its predecessor, we name this simulator hacchpsim.
However throughout this document, we use chpsim for brevity.

1.1 History
Where it all began...

History of original chpsim? Differences.

Inspiration from mcc, a concurrent dialect of the C language.

Chapter 2: Usage 5)

2 Usage

This chapter describes chpsim’s command-line options.
Usage: ‘hacchpsim [options] obj-file’
To pass a script to hacchpsim, use shell redirection or pipes. For example,
$ cat test.chpsimrc | hacchpsim -b test.haco
or

$ hacchpsim -b test.haco < test.chpsimrc

2.1 Option Summary

For options that take an argument, the space between the flag and the argument is optional.

none [User Option]
With no arguments, just print a list of all command-line options, much like what is
summarized below.

-b [User Option]
Batch mode, non-interactive, promptless. This is useful for running scripts or piping
in commands while suppressing prompts. This mode also turns off tab-completion
in the interpreter. The opposing option is ‘-i’. Note: executables linked against
libeditline may require this option for processing scripts due to a mishandling of

EOF.

-d checkpoint [User Option]
Produce a textual dump of a checkpoint binary. Exits without running the simulator.

-f flag [User Option]
See Section 2.2 [General Flags], page 6.

-h [User Option]
Help. Print command-line help and exit.

-h [User Option]
Help. Print list of all interpreter commands and exit.

-i [User Option]
Interactive, prompting. This is the default mode. The opposing option is ‘-b’.

-I path (repeatable) [User Option]
Append path to the list of paths to search for sourcing other command scripts in the
interpreter.

-L path (repeatable) [User Option]

Append path to the list of paths to search for opening shared library plug-ins (mod-
ules). The equivalent command in the interpreter is [dladdpath|, page 15. For
more on building and loading shared-libraries, See Chapter 5 [Extending simulation],
page 21.

HACKT CHPSIM Manual

-1 Iib (repeatable) [User Option]

Load the lib shared library module for registering user-defined run-time functions.
lib should be named without its file extension, for the sake of portability. For ex-
ample, ‘libcrunch.la’ should be referenced as ‘libcrunch’, and ‘chewy.so’ should
be referenced as ‘chewy’. The equivalent command in the interpreter is [dlopen],
page 15.

[User Option]
Pass to indicate that input file is a source (to be compiled) as opposed to an object
file.

-C options [User Option]

When input is a source file, forward options to the compiler driver.

-r file [User Option]

Startup the simulation already recording a trace file of every event. Trace file is
automatically close when simulation exits. This is equivalent issuing trace command
at the beginning of a simulation session.

-t type [User Option]

Instead of expanding the whole top-level instances, only operate on the given type
type, i.e. instantiate one instance of type as the top-level. This variation, however
does not expand subinstances recursively, like the ‘=T’ option. This is particularly
useful for examining the CHP event structure of a particular definition.

=T type [User Option]

-V

2.2

Instantiate one instance of type type as the top-level, ignoring all previous top-level
instances in the object file. This variation does recursively instantiate substructures.
The ports of the instance of type (if any) will not be connected to any other pro-
cesses. This is particularly useful for selecting test structures out of a collection of
test structure definitions.

[User Option]
Print version information and exit.

General Flags

For lack of better organization, many general purpose flags are folded into the ‘-f’ op-

tion.

Unless otherwise noted, all ‘-f’ options have a ‘no-’ prefixed counterpart, so ‘-f

no-disassemble’ is the intuitive negation of ‘-f disassemble’. Later options always over-
ride earlier options.

-f check-structure [User Option]

Run additional internal graph (nodes and edges) consistency checks. Enabled by
default.

-f default [User Option]

Resets to default flags. Has no negation.

Chapter 2: Usage 7

-f dump-graph-alloc [User Option]
Diagnostic tool. Produce a textual dump of expression allocation after the internal
whole-program graph has been constructed.

-f dump-dot-struct [User Option]
Produce a textual netlist of the whole-program event graph in dot format®. A list of
options that tune this output can be found in Section 2.3 [Graph Generation|, page 7.

-f run [User Option]
Actually run the simulator’s interpreter. Enabled by default. ‘-f no-run’ is explicitly
needed when all that is desired are diagnostic dumps.

-f ack-loaded-fns [User Option]
Print names of functions as they are loaded from dlopened modules. Default on.
Mostly useful for diagnostics.

2.3 Graph Generation

The following flags are relevant only with ‘-f dump-dot-struct’. All of these options are
also negatable with ‘no-’ prefixed. Don’t forget to pass ‘-f no-run’ when not intending to
run the interpreter.

-f cluster-processes [User Option]
Wrap process subgraphs into clusters, which are enveloped in rectangular outlines.
Default off.

-f show-channels [User Option]

Label channel edges with their channel names. Default off.

-f show-delays [User Option]
Annotate event nodes with their delay values. Default off.

-f show-event-index [User Option]
Annotate event nodes with their globally allocated indices. Default off.

-f show-instances [User Option]
Also show allocated instances as nodes. Default off.

1 dot is the name of a program (and its input language) that is part of AT&T’s GraphViz package (open-
source).

Chapter 3: Tutorial 9

3 Tutorial

This chapter contains some small examples for quickly getting started and verifying that
the simulator is working properly.

The examples in this chapter are taken out of the test suite and its testing library.
Enter the following definitions into a HAC file ‘bool-1ib.hac’

defproc bool_buf (chan?(bool) L; chan!(bool) R) {
bool x;

chp { *[L7(x); R!'(x)] %}

}

template <pbool B>

defproc bool_buf_init (chan?(bool) L; chan!(bool) R) {
bool x;

chp { x:=B; *[R!(x); L?(x)] }

}

template <><pint N; pbool B[N]>

defproc bool_source_once(chan! (bool) S) {
chp {

{;i:N: S'(B[i]) }

}

}

template <><pint N; pbool B[N]>
defproc bool_source(chan! (bool) S) {
chp {
*[
{;i:N: SV (B[il) }
]
}
}

defproc bool_sink(chan?(bool) B) {
bool b;

chp {

*[B7(b)]

}

}

We will be reusing this file in many examples. Instantiate some of these types in another
file ‘bool-test-1.hac’.

import "bool-lib.hac";

chan(bool) L, R;
bool_source SRC<4,{false,false,true,true}>(L);
bool_buf B(L, R);

10 HACKT CHPSIM Manual

bool_sink SNK(R);
Compile the file using haco (or one of the template Makefiles):

$ haco bool-test-1.hac bool-test-1.haco
$ haccreate bool-test-1.haco bool-test-1.haco-c

and run hacchpsim:
$ hacchpsim bool-test-1.haco-c
The hacchpsim simulator is interactive. You should see the following prompt:
chpsim>
The following session is an example of stepping through the simulator while watching
data values on channels:
chpsim> get L
L : chan(bool<>) L = (0) [empty]
chpsim> get R
R : chan(bool<>) R = (0) [empty]

get queries the current state of a channel or data variable. All channels are initially empty
(current values are meaningless), which is indicated by [empty]. Executed events are
printed in a table format, whose headings are given by print-event-header.

1. time is the time of the event

eid is the (global) static event ID number (corresponding to a node in the event graph)
pid is the index of the process in which the event occurred

event is text for the CHP statement that executed

Ok N

cause shows the critical predecessor event’s static ID

For the critical predecessor to be printed we need to turn it on:

chpsim> cause
chpsim> watchall-events
chpsim> print-event-header

time eid pid event cause

chpsim> step 20
0 0 4 null
10 5 2 B.L?7(B.x)
10 1 1 SRC.S! (false) [by:5]
20 6 2 B.R!(B.x) [by:5]
20 7 3 SNK.B7(SNK.b) [by:6]
30 5 2 B.L7(B.x) [by:6]
30 4 1 SRC.S! (false) [by:5]
40 6 2 B.R!(B.x) [by:5]
40 7 3 SNK.B?(SNK.b) [by:6]
50 5 2 B.L7(B.x) [by:6]
50 3 1 SRC.S! (true) [by:5]
60 6 2 B.R!(B.x) [by:5]
60 7 3 SNK.B?(SNK.b) [by:6]
70 5 2 B.L?7(B.x) [by:6]
70 2 1 SRC.S! (true) [by:5]

Chapter 3: Tutorial 11

80 6 2 B.R!(B.x) [by:5]
80 7 3 SNK.B?(SNK.b) [by:6]
90 5 2 B.L7(B.x) [by: 6]
920 1 1 SRC.S!(false) [by:5]
100 6 2 B.R!(B.x) [by:5]

Above, the simulator displays a trace of 20 events as they are executed. The first event
is always the null event, which starts all processes. The source repeated sends values to
the buffer, and the buffer sends values to the receiver. Send and receive actions execute
atomically in pairs. (B.L and SRC.S both refer to channel L.) This trace does not actually
show what values were sent over the channels. We restart this example, watching the
channel data values this time:

chpsim> initialize

chpsim> unwatchall-events

chpsim> watch-value L R

chpsim> step 20

updated channel(s):

chan(bool<>) L = (0) [recvd]

watch: 10 5 2 B.L7(B.x)

updated channel(s):

chan(bool<>) L = (0) [empty]

watch: 10 1 1 SRC.S! (false) [by:5]
updated channel(s):

chan(bool<>) R = (0) [sent]

watch: 20 6 2 B.R!(B.x) [by:5]
updated channel(s):

chan(bool<>) R = (0) [empty]

watch: 20 7 3 SNK.B?7(SNK.b) [by:6]
updated channel(s):

chan(bool<>) L = (0) [recvd]

watch: 30 5 2 B.L7(B.x) [by:6]
updated channel(s):

chan(bool<>) L = (0) [empty]

watch: 30 4 1 SRC.S!(false) [by:5]
updated channel(s):

chan(bool<>) R = (0) [sent]

watch: 40 6 2 B.R!(B.x) [by:5]
updated channel(s):

chan(bool<>) R = (0) [empty]

watch: 40 7 3 SNK.B7 (SNK.b) [by:6]
updated channel(s):

chan(bool<>) L = (1) [recvd]

watch: 50 5 2 B.L7(B.x) [by:6]
updated channel(s):

chan(bool<>) L = (1) [empty]

watch: 50 3 1 SRC.S! (true) [by:5]
updated channel(s):

12 HACKT CHPSIM Manual

chan(bool<>) R = (1) [sent]

watch: 60 6 2 B.R!(B.x) [by:5]
updated channel(s):

chan(bool<>) R = (1) [empty]

watch: 60 7 3 SNK.B?7(SNK.b) [by:6]
updated channel(s):

chan(bool<>) L = (1) [recvd]

watch: 70 5 2 B.L7(B.x) [by:6]
updated channel(s):

chan(bool<>) L = (1) [empty]

watch: 70 2 1 SRC.S! (true) [by:5]
updated channel(s):

chan(bool<>) R = (1) [sent]

watch: 80 6 2 B.R!(B.x) [by:5]
updated channel(s):

chan(bool<>) R = (1) [empty]

watch: 80 7 3 SNK.B?7(SNK.b) [by:6]
updated channel(s):

chan(bool<>) L = (0) [recvd]

watch: 90 5 2 B.L7(B.x) [by:6]
updated channel(s):

chan(bool<>) L = (0) [emptyl

watch: 90 1 1 SRC.S! (false) [by:5]
updated channel(s):

chan(bool<>) R = (0) [sent]

watch: 100 6 2 B.R!(B.x) [by:5]

A list of all commands with brief descriptions is printed with ‘help all’. Please re-
fer to Chapter 4 [Commands|, page 13 for a comprehensive description of all hacchpsim
commands.

Exercises.

Tracing.

Chapter 4: Commands 13

4 Commands

This chapter describes all of the simulator’s interactive commands. Commands are orga-
nized into the following categories:

‘builtin’ Built-in interpreter commands

‘general’ General-purpose commands

‘info’ Information about the simulation state
. ,) .

modes Simulator execution modes
‘simulation’

Breakpoints and step control
‘tracing’ Checkpointing and tracing

‘view’ Simulation state monitoring and feedback

4.1 builtin commands
Built-in commands pertain to the interpreter, and have no relation to simulation.

help cmd [Command]|
Help on command or category cmd. ‘help all’ gives a list of all commands available
in all categories. ‘help help’ tells you how to use help.

.. [Command]
comment ... [Command]
Whole line comment, ignored by interpreter.

echo output [Command]|
Print output to stdout. Note: multiple spaces in output are compacted into single
spaces by the interpreter’s tokenizer.

exit [Command]|
quit [Command|
Exit the simulator.

abort [Command]|
Exit the simulator with a fatal (non-zero) exit status.

precision [n] [Command]
Sets the precision of real-valued numbers to be printed. Without an argument, this
command just reports the current precision.

repeat n cmd... [Command]
Repeat a command c¢md a fixed number of times, n. If there are any errors in during
command processing, the loop will terminate early with a diagnostic message.

history [start [end]] [Command]
Prints command history. If no arguments given, then print entire command history. If
only start is given, print to the most recent line. If start is negative, count backwards
from last line. If end is positive, count forward from start. If end is negative, count
backward from last line.

14 HACKT CHPSIM Manual

history-noninteractive [on]of] [Command]
Controls the recording of non-interactive commands in the history.

history-save file [Command|
Writes command line history to file file.

history-rerun start [end] [Command]
Reruns a set of previous commands. start is the first line to rerun. If end is omitted,
only one line is rerun. If end is negative, count backwards from the most recent to
determine the last line to run in the range. If end is positive, take that as the number
of lines to execute from start, inclusive.

interpret [Command]
Open an interactive subshell of the interpreter, by re-opening the standard input
stream. This is useful when you want to break in the middle of a non-interactive
script and let the user take control temporarily before returning control back to the
script. Ctrl-D sends the EOF signal to exit the current interactive level of input and
return control to the parent.

! shell-cmd [Command]|
Shell escape. Execute shell-cmd in parent shell, like the ‘system’ library function,
e.g. ‘!date’. Note: this preserves the rest of the line after the ‘I’ verbatim.

The following commands are related to command aliases. Every command line given
to the interpreter recursively expands the first token if it has a known alias. Aliases may
reference to other aliases in the first token. The interpreter is smart enough to catch cyclic
aliases and report an error.

alias cmd args [Command]|
Defines an alias, whereby the interpreter expands cmd into args before interpreting
the command. args may consist of multiple tokens. This is useful for shortening
common commands.

aliases [Command]|
Print a list of all known aliases registered with the interpreter.

unalias cmd [Command]|
Undefines an existing alias cmd.

unaliasall [Command]|
Undefines all aliases.

The following commands emulate a directory like interface for navigating the instance
hierarchy, reminiscent of shells. By default, all instance references are relative to the cur-
rent working directory, just like in a shell. Prefix with ‘::’ to use absolute (from-the-top)
reference. Go up levels of hierarchy with ‘. ./’ prefix. The hierarchy separator is ‘.’ (dot).

cd dir [Command]
Changes current working level of hierarchy.

pushd dir [Command]
Pushes new directory onto directory stack.

Chapter 4: Commands 15

popd [Command]
Removes last entry on directory stack.

pwd [Command]
Prints current working directory.

dirs [Command]
Prints entire directory stack.

The following command is useful for showing each executed command.

echo-commands arg [Command]
Enables or disables echoing of each interpreted command and tracing through sourced
script files. arg is either "on" or "off". Default off.

4.2 general commands

The following commands relate to sourcing script files. Scripts may source other scripts.
Cyclic scripts are detected and diagnosed as errors.

source script [Command]
Loads commands to the interpreter from the script file. File is searched through in-
clude paths given by the [*-I’], page 5 command-line option or the [addpath], page 15
command.

addpath path [Command]
Appends path to the search path for sourcing scripts.

paths [Command]
Print the list of paths searched for source scripts.

The following commands relate to extending the simulator with user-defined functions
in dynamically loaded shared libraries. More on shared modules can be found in Chapter 5
[Extending simulation], page 21.

dladdpath paths ... [Command]
Append paths to the list of paths to search for opening shared library modules. This
is useful if you simply forget (or are too lazy) to pass the corresponding paths on the
command-line. See also [the ‘-L’ option|, page 5.

dlopen lib [Command]
Open shared library Iib for loading external user-defined functions. Library is found
by searching through user-specified load paths and the conventional library path envi-
ronment variables. The command-line equivalent is the [‘-1" option], page 6, following
the same naming guidelines.

dlpaths [Command]
Prints the list of paths used in searching for dlopen-ing modules.

dlcheckfunc funcs ... [Command]
For each function named in funcs, report whether or not it has been bound to a symbol
in a dynamically loaded module. Never errors out. See [command dlassertfunc],
page 16.

16 HACKT CHPSIM Manual

dlassertfunc funcs ... [Command]
Error out if any function named in funcs is unbound to a module symbol. Useful for
making sure a set of symbols is resolved before any execution begins. See [command
dlcheckfunc|, page 15.

dlfuncs [Command]|
Print list of registered functions, from dlopened modules.

4.3 info commands

assert-queue [Command]
Error out if the event queue is empty. Useful as a quick check for deadlock.

assertn-queue [Command]|
Error out if the event queue is not empty.

queue [Command]
Print an ordered list of all events in the checking event queue and execution event
queue.

dump-event event-id [Command]

Print status information about event number event-id.

dump-event-source event-id [Command|
Print full-context of the source in which event event-id occurs.

dump-all-event-source [Command]
Print full-context of the source for all events.

dump-state [Command]|
Print textual summary of entire state of simulation.

get inst [Command]|
Print the state information about instance named inst. The name inst need not be
canonical. Information includes current run-time value, if applicable.

print-event-header [Command]|
Prints a table header suitable for interpreting printed event records.

subscribers inst [Command]
Print a list of all events currently subscribed to the value of variable inst. Such events
are alerted for rechecking when value of inst changes.

subscribers-all [Command]
Print a list of all events currently subscribed to any variables.

time [Command]|
Print the current simulator time.

what inst [Command]|
Prints the type of the named instance inst, along with its canonical name.

Chapter 4: Commands 17

who inst [Command]

who-newline name [Command]|
Print all equivalent aliases of instance name. The ‘-newline’ variant separates names
by line instead of spaces for improved readability.

1s name [Command]|
List immediate subinstances of the instance named name.

4.4 modes commands

null-event-delay [delay] [Command]
Without the delay argument, prints the value of the delay used for “trivial” events.
With the delay argument, sets the said delay value.

timing mode [Command|
Select timing mode for event delays. mode can be one of the following:

‘uniform’ Use the same delay for all events, set by uniform-delay.
‘random’ Use a high-entropy random variable delay.

‘per-event’
Use the delay specified by each individual event.

seed48 [int int int] [Command]
Corresponds to libe’s seed48 function. With no argument, print the current values of
the internal random number seed. With three (unsigned short) integers, sets the ran-
dom number seed. Note: the seed is automatically saved and restored in checkpoints.

uniform-delay [delay] [Command]
The uniform delay value only takes effect in the uniform timing mode. Without the
delay argument, prints the value of the delay. With the delay argument, sets the said
delay value.

4.5 simulation commands

initialize [Command]|
Resets the variable state of the simulation, while preserving other settings such as
mode and breakpoints.

reset [Command]|
Similar to initialize, but also resets all modes to their default values.

The following commands run the simulation. Simulation is interrupted if a run-time
error occurs, or a breakpoint is tripped. Ctrl-c or ‘SIGINT’ (from ‘kill -INT’) interrupts
the simulation and returns control back to the interpreter in interactive mode.

advance delay [Command|
Advances the simulation delay units of time.

advance-to ¢t [Command]
Advances the simulation until time t.

18 HACKT CHPSIM Manual

step n [Command|
Advances the simulation by n steps.

run [Command|
Runs the simulation until the event queue is empty, if ever.

The following commands pertain to breakpoints.

break-event event-id [Command]|
Stop the simulation when event event-id executes.

break-value inst [Command]|
Stop the simulation when variable inst is written, event when its value does not
change.

unbreak-event event-id [Command]

Remove breakpoint on event event-id.

unbreak-value inst [Command]|
Remove breakpoint on variable inst.

show-event-breaks [Command]
List all event breakpoints.

show-value-breaks [Command]|
List all variable breakpoints.

unbreakall-events [Command]
Removes all event breakpoints.

unbreakall-values [Command]|
Removes all variable breakpoints.

4.6 tracing commands

Checkpointing is useful for saving long simulations. Checkpoint files are only valid for
simulations that load the same object file that was used to produce the checkpoint. A few
minimal consistency checks are performed to alert the user of a mistake.

The structure of the whole-program (after state allocation) is not retained in the check-
point; rather, it is regenerated from the object file. Note: Only the state of variables (their
values) and events is written to the checkpoint. Simulator modes, breakpoints, watchpoints,
and dlopen-ed modules are not preserved in checkpoints, nor are they affected by loading
checkpoints.

TODO: periodic checkpointing, via auto-save.
save ckpt [Command]

Saves the current simulator state to a checkpoint file ckpt that can be restored later.
Overwrites ckpt if it already exists.

Chapter 4: Commands 19

load ckpt [Command]
Restores the simulator state (variables and events) from a checkpoint file ckpt. Load-
ing a checkpoint will not overwrite the current status of the auto-save file, the pre-
vious autosave command will keep effect. Loading a checkpoint, however, will close
any open tracing streams.

Entire execution traces may be saved away for offline analysis. Again the structure of
the whole-program (after state allocation) is not recorded in the trace; rather, it is assumed
from the object file.

TODO: Section on trace file details and internals?

trace file [Command]
Record events to tracefile file. Overwrites file if it already exists. A trace stream is
automatically closed when the initialize or reset commands are invoked. See the
‘-r’ option for starting up the simulator with a newly opened trace stream.

trace-file [Command]|
Print the name of the currently opened trace file.

trace-close [Command]
Finish writing the currently opened trace file by flushing out the last epoch and
concatenating the header with the stream body. Trace is automatically closed when
the simulator exits.

trace-dump file [Command]|
Produce textual dump of trace file contents in file.

trace-flush-interval steps [Command]|
If steps is given, set the size of each epoch according to the number of events executed,
otherwise report the current epoch size. This regulates the granularity of saving traces
in a space-time tradeoff.

trace-flush-notify [0]1] [Command]
Enable (1) or disable (0) notifications when trace epochs are flushed.

4.7 view commands

The view category commands controls what information is printed by the simulator as it
executes events. Watchpoints are similar to breakpoints in the feedback that is printed, but
without interrupting simulation.

cause [Command]|
Show causes of events when events are printed.

nocause [Command]
Turn off cause in feedback.

watchall-queue [Command]
Print events as they enter the event queue (either for checking or execution). This is
generally recommended for debugging, as it prints a lot of information.

20 HACKT CHPSIM Manual

nowatchall-queue [Command]
Disables watchall-queue.

watch-event event-id [Command]
Watchpoint. Print event event-id each time it executes, without interrupting.

unwatch-event event-id [Command]
Remove watchpoint on event event-id.

watch-value inst [Command]
Print events that write to inst as they execute.

unwatch-value inst [Command]|
Stop watching inst.

show-event-watches [Command]
Print list of all watched events.

show-event-values [Command]
Print list of all watched variables.

watchall-events [Command]
Print all events as they execute, regardless of whether or mnot they are explicitly
watched.

nowatchall-events [Command]|

Stop printing all events, but keep printing events that are explicitly listed watchpoints.
This is particularly useful for temporarily watching all events in detail, and later
restoring only explicitly watched events.

Chapter 5: Extending the simulator 21

5 Extending the simulator

This chapter describes the procedure for providing user-defined functions through an exter-
nal shared library module (or plug-in).
For this chapter (and in your own work) we strongly recommend including the following

template Makefile in your own working Makefile:

"Makefile"

include prefix/share/hackt/mk/hackt-1t.mk
where prefix refers to the base installation path of the tools. This Makefile template
simplifies compilation and linking tremendously, and also provide suffix compilation rules
for HAC object files. We will refer to some definitions found in ‘hackt-1t.mk’ throughout
this section.

5.1 CHP Function Calls

In CHP, function calls may appear in expressions or as standalone statements. Function
call syntax is similar to that of C, and functions may take arbitrarily many arguments, or
no arguments at all.

defproc func(chan?(int) A, B, chan!(int) C) {

int a, b;
chp {
*x[A7(a), B?(b);
alert_me(); // alert_me is a yet undefined function
C!(twiddle(a,b)) // twiddle is a yet undefined function
]
}
}

Definitions such as the above can be compiled (by haco) all the way through creation
(haccreate) and state allocation (hacalloc) without errors. All such nonmeta (run-time)
functions are only bound at run-time. A consequence of such late binding is that the types
and number of parameters of function calls cannot be checked at compile time.

With the above example, instantiate some environment of sources and sinks:

chan(int) X, Y, Z;
func F(X, Y, Z);

chp { *[X!(DD] } // value source
chp { *[Y!(2)] }
chp { *[Z7] } // value sink
If your file is called ‘chptest.hac’, run make chptest.haco-a. This will compile, create,
and allocate the state in an object file. If you only make the ‘.haco’ or ‘.haco-c’ object
files, hacchpsim will automatically compile the object file as much as necessary.

¢

You can now run the simulation:

$ hacchpsim chptest.haco-a
chpsim> watchall-events
chpsim> run

22 HACKT CHPSIM Manual

Eventually tries to call unbound function alert_me.
Such errors can be caught earlier using the [dlassertfunc|, page 16 command.

Next we compile a libary to provide these missing functions.

5.2 Shared Module Creation

There are two parts to building a shared library module: compiling and linking.

5.2.1 Compiling module sources

A typical chpsim-module source file (C++) is organized as follows:

// "chptest.hac"
// include headers
#include <sim/chpsim/chpsim_dlfunction.h>

// using declarations
USING_CHPSIM_DLFUNCTION_PROLOGUE

// function definitions

static

void

my_alert(void) {
// your code here

+

// a module export macro
CHP_DLFUNCTION_LOAD_DEFAULT("alert_me", my_alert)

static

int_value_type

compute (const int_value_type a, const int_value_type b) {
// return some function of a and b

}

CHP_DLFUNCTION_LOAD_DEFAULT("twiddle", compute)

The header ‘sim/chpsim/chpsim_dlfunction.h’ should have been installed in
the pkgincludedir, ‘$(prefix)/include/hackt/’. This header defines the macros
and prototypes used in the rest of the source. To add the header path to the search
paths during compilation (actually, preprocessing), either pass the path directly ‘-I
pkgincludedir’, or pass it indirectly using shell expansion and hackt-config: ‘-I
‘hackt-config --cflags‘’. The latter method is preferred because it works across hosts
with tools installed in different paths. The ‘hackt-1t.mk’ template Makefile appends this
flag to CPPFLAGS for you automatically, when compiling chpsim module objects.

Chapter 5: Extending the simulator 23

USING_CHPSIM_DLFUNCTION_PROLOGUE [Macro]
This just imports certain type names from the header into the current namespace
with C++ using-directives. The details are not important. For compatibility, one
should always use this macro and let the preprocessor expand its definition.

CHP_DLFUNCTION_LOAD_DEFAULT name sym [Macro]
This is the macro that is responsible for binding the library symbol sym to a name
of the user’s choice name, a string. Name binding occurs automatically as soon as
the module is loaded (by dlopen). (If you must know, this is achieved through static
object initialization.) The C++ function symbol sym must be a prototype that uses
the restricted set of types: int_value_type and such.

REGISTER_DLFUNCTION_RAW name sym [Macro]
This macro is responsible for binding the library symbol sym to a name of the
user’s choice name, a string. The function prototype of sym must be of the form:
‘chp_function_return_type (*) (const chp_function_argument_list_type&)’.

chp_function_return_type [Data type]
This is the return type used in chpsim’s run-time environment. This is a memory-
managed pointer (reference-counted) to an abstract expression type. Defined in
‘Object/expr/dlfunction_fwd.h’.

chp_function_argument_list_type [Data type]
This is the argument list type passed to all registered CHP functions. From this list-
type, arguments are automatically extracted and passed to native C++ functions by
CHP_DLFUNCTION_LOAD_DEFAULT. This is typically a list of memory-managed pointers
to abstract expression types. Defined in ‘Object/expr/dlfunction_fwd.h’.

You may have noticed that the ‘compute’ function references return types and argument
type int_value_type. A few such types are defined in the interface to chpsim’s run-time.
These types are defined in the header ‘Object/expr/types.h’.

int_value_type [Data type]
The signed integer data type, corresponding to ‘int<W>’ in CHP, typically defined to
the host machine’s native integer type.

bool_value_type [Data type]
The boolean data type, corresponding to ‘bool’ in CHP, typically defined to a C++
bool, or the smallest character type.

real_value_type [Data type]
The floating-point data type, corresponding to ‘real’ in CHP, typically defined to
float or double.

string_value_type [Data type]
The string data type, typically defined to a C++ std::string. Recommendation:
When defining functions that take this type as an argument, pass it by reference, for
example: ‘void dump_string(const string_value_type&);’.

24 HACKT CHPSIM Manual

All functions that are registered with CHP_DLFUNCTION_LOAD_DEFAULT() are required to
use only the above types in argument types and return types (and void). If your function
uses different but convertible types, then write a call-wrapper that uses only the allowed
types and forwards the arguments and return values. This is necessary when compiling and
linking against symbols that belong to libraries beyond your control, or when you simply
don’t want to alter an existing library. When in doubt, it is always safe to use a such a
wrapper. It is possible to change these types (say, to increase precision) if the entire suite
of HACKT tools is re-compiled.

Compiling the source file for a shared library requires some additional measures. For-
tunately, with the aid of conveniently installed template Makefiles, the complexities are
hidden'. ‘hackt-1t.mk’ provides a suffix rule for compiling C++ files ending with ‘.cc’ to
Libtool-wrapped object files ‘.10’.

For every C++ source file (‘.cc’) that is to be linked into the chpsim module, its corre-
sponding object file should be referenced with the ‘.10’ extension (for Libtool object). The
next section describes how to correctly link a chpsim module.

5.2.2 Linking module libraries

In your working Makefile, you will refer to target libraries with a ‘.1a’ extension (Libtool
archive). The ‘.1a’ extension replaces what would normally be ‘.so’, ‘.dylib’, ‘.d11’, or
the native shared-object extension. Libtool provides a platform-independent abstraction of
shared libraries, so the user need not worry about these details. The target library name
need not be prefixed with ‘1ib’, since it is being dlopened as a module (plug-in). Suppose
the above source file was named ‘foo.cc’, and our target library is ‘bar.la’, one might
write in the Makefile:

"Makefile" (continued)
list of dependent libraries (-1...)
bar_la_LIBADD =

required flags
bar_la_LDFLAGS = $(CHPSIM_MODULE_FLAGS)

-L search paths to dependent libraries
bar_la_LDFLAGS +=

object file list
bar_la_0BJECTS = foo.lo

bar.la: $(bar_la_0BJECTS)
$ (CXXLINK) $(bar_la_LDFLAGS) $(bar_la_0BJECTS) $(bar_la_LIBADD)

The ‘bar.la’ to ‘bar_la’ name canonicalization is borrowed from Automake’s vari-
able naming convention. We’ve referenced some variables in the Makefile, defined in
‘hackt-1t.mk’

1 Such complexities include additional compiler flags for shared-library objects, such as PIC (position-
independent-code).

Chapter 5: Extending the simulator 25

CHPSIM_MODULE_FLAGS [Makefile variable]
Flags that tell Libtool to link the shared library to be suitable for dlopening (dynamic
loading). Value should remain unmodified.

CXXLINK [Makefile variable]
The aggregate link command (without arguments).

Invokes hackt-libtool as a link wrapper. Should remain unmodified. Depends on
the CXX Makefile variable.

CXX [Makefile variable]
The user should define the C++ compiler, which is also to be invoked as the linker.
Autoconf users may wish to set this automatically through a configure script, e.g.
CXX = @CXX@ in Makefile.in.

Other relevant variables are also provided:

HACKT_LIBTOOL [Makefile variable]
Defined to hackt-1ibtool, which is expected to be in the PATH. This is a renamed
copy of the ‘libtool’ script that was configured during the compilation of the tools.
This has the advantage of storing and re-using all of the flags needed for building
shared libraries on the host platform, thus saving the user from having to do any
configure-detection when using chpsim.

HACKT_CONFIG [Makefile variable]
Defined to hackt-config, which is expected to be in the PATH. This script con-
tains package installation information such as include header paths and libaries. For
building chpsim modules, only a few compile time options are needed, no additional
libraries are needed.

CPPFLAGS [Makefile variable]

CHPSIM_OBJECT_CPPFLAGS [Makefile variable]
Expands to flags needed to compile chpsim module source files. Gratuitously ap-
pled to all libtoolized compilations. CPPFLAGS may be appended by the user, but
CHPSIM_OBJECT_-CPPFLAGS may not.

CXXFLAGS [Makefile variable]
Intially empty, may be appended by the user for tuning compilation.

Summary: defining CXX suffices to successfully build chpsim module ‘bar.la’ in the
above example. One word of caution: the ‘.1a’ file is merely a placeholder that tells libtool
where to find the actual built archives, which are actually built in the ‘.1ibs’ subdirectory.
Don’t expect to be able to move these files arbitrarily without breaking. (There’s still a
good chance of it working because the libraries are not built for use in an installed location.)

Now you can build the module with ‘make bar.la’.

26 HACKT CHPSIM Manual

5.3 Run-time Module Loading

With our built module, we can now load it into hacchpsim. One way is to pass libraries on
the command line using the [‘-1’ option|, page 6 and the [‘~L’ option]|, page 5.

$ hacchpsim -lbar chptest.haco-a
loaded function: ‘alert_me’
loaded function: ‘twiddle’
chpsim> watchall-events

chpsim> step 40

The alternative is to add library paths and load libraries after the simulator is launched.

$ hacchpsim chptest.haco-a
chpsim> dlopen bar

loaded function: ‘alert_me’
loaded function: ‘twiddle’
chpsim> watchall-events
chpsim> step 40

Loading libraries on the command-line and in the interpreter is allowed, and works as
expected. chpsim can load arbitrarily many libraries (within the limits of the operating
system), and as long as the registered function names don’t conflict.

5.4 Run-time Diagnostics
chpsim performs some run-time checks on the dynamically loaded functions when they are
called. Run-time errors will occur under any of the following conditions:

e If a function is called but yet unbound

e If function name-collision occurs while loading modules

e A function is passed an argument with the wrong type

e A function is passed too few arguments

e The called function throws an exception, or calls abort or terminate

Note that passing too many arguments does not trigger an error, the excess arguments
are simply dropped.

5.5 An Example

A complete example (from the test suite) is installed under:
‘prefix/share/hackt/doc/examples/chpsim-function/’

The files contained therein are ‘README’, ‘hello.cc’, ‘hello-test.hac’, and
‘Makefile.in’.

It is very similar to the example described earlier in this chapter. To run this example
(VPATH make using remote source directory), do the following:

1. Create a new empty working directory, and enter it.

For example, ‘mkdir play && cd play’.

Copy the example’s ‘Makefile.in’ locally to ‘Makefile’.
3. Edit the ‘Makefile’ (instructions included therein):

Chapter 5: Extending the simulator 27

a. Point srcdir and VPATH to
‘prefix/share/hackt/doc/examples/chpsim-function’.

b. Delete the other variables in the preamble (optional).

c. Point the include line to the installed ‘hackt-1t.mk’.

d. Set CXX to your C++ compiler.

If you run make, it will perform all the necessary compilation steps and dump a short
run of the simulation to an output file ‘hello-test.chpsimrc-out’.

Another output file ‘confirm-exec’ is produced to confirm that all the necessary
toolchain executables are found in your PATH. Some additional clean targets are also
provided.

If you want to modify the examples, the (non-VPATH) alternative is to copy the whole
example directory and dispense with setting srcdir and VPATH.

5.6 Global Initialization

External functions often access global variables outside the scope of the simulator. Global
variables and objects in modules can be initialized in several ways. One way is to initialize
object through their class constructors. Global objects are constructed in source order in
their respective translation units, which is also how functions are registered. Plain-old-data,
however, are often initialized through a function call. Another way is to do initialization
work (directly, or through function call) in a static object constructor.

class module_init {
public:
module_init() {
// initializations and resource acquisitions...
}
“module_init () {
// deallocations and resource releasing...
}
s

static const module_init __init__;

Above, the __init__ object’s constructor will perform the initializations and resource
allocations for this module. Since modules are not explicitly unloaded (by ‘dlclose’),
module destruction will not occur until chpsim exits. [Ask me if you need destruction
earlier.|

C++ Reminder: global object destruction occurs in the reverse order of construction. C
Reminder: the order of initialization between different translation units (even in the same
module) is undefined, and should not be relied upon.

5.7 Module Rationale

The goals of our implementation of run-time bound user-defined functions were:

e Convenience: eliminate unnecessary compilation of the toolchain

28

HACKT CHPSIM Manual

Ease: installed Makefile templates provide simple interface without expecting the user
to deal with additional tools such as Autoconf, Automake, and Libtool

Flexibility: be able to re-bind functions by simulating the same object file with different
modules

Portability: provide a consistent interface for shared library management across all
platforms (thanks to GNU Libtool!)

Safety: provide reasonable run-time type checking on functions

You be the judge of how we fared.

Chapter 6: Event-driven Execution 29

6 Event-driven Execution

Describe event-driven execution algorithm. Do we really need to devote an entire chapter
to this? (Mutters to self: really need to organize this document...)

6.1 Event ordering
Figure: Obsolete: CHP simulator event life cycle

Nextevent in schedule is executed,

changing the state of some variables.

becribed o changed

Subscribe svent to Unsubsgribe event from Ignore event)

s block dependencios. s block dependencis. fis sill subscribed). .
/
-
i o
Schedule event T

with sorme delay

Figure: CHP simulator event algorithm

Dequeue neat event in checking queue (if any)

yeu
Block event and Executed event,
subscribe to dependencies changing the swie of some variables.
For all successors All events subscribed to changed
schedulein chocking queue with delay variables are added ta the recheck Hst.

For all evenis in recheck list

15 event eady to execute?

Unsubscribe event from

Ignorecvent

(is still subscribed)

its block dependencies,

schedulein immediate event queue.

30 HACKT CHPSIM Manual

The whole-program event graph is composed of concurrent event graphs representing
each process. The edges in the event graph represent the legal orderings between events,
including cycles. Any process’s execution trace is a projection of the entire program’s
execution trace (and all possible traces).

6.2 Timing

The delays associated with each event are prefix delays, i.e. the delays are applied before
the event is checked for the first time'. In other words, every successor of an event that
just executed is scheduled for future checking using the delay of each successor. When an
event is checked for the first time, it is either blocked or executed immediately. When an
event is blocked, it is subscribed to its dependencies (or some conservative superset thereof).
When an event is unblocked, it is unsubscribed from its dependencies and placed into the
immediate erecution queue because it has already paid its delay up front, and thus should
not be delayed further. The immediate execution queue contains only unblocked events
that take precedence over the checking queue.

1 One reason why a prefix-delay model was chosen was to facilitate the pseudo-atomic execution of send-
receive event pairs. Pseudo-atomicity arises from the fact paired-events are still executed individually,
but guaranteed to share the exact same timestamp. Had we chosen to use suffix or infix delays, delays
would be applied after unblocking, resulting in potentially different timestamps.

Chapter 7: Standard Library Functions 31

7 Standard Library Functions

This section describes the usage of existing library functions. These library functions
can be loaded by dlopening ‘stdchpfn.la’; which is located in ‘pkglibdir’ (like
‘prefix/lib/hackt’).
To load the standard library:
$ hacchpsim -Lprefix/lib/hackt -lstdchpfn foo.obj
To help with passing the correct library flags, you can also invoke ‘hackt-config
--ldflags’ to automatically expand the flags:
$ hacchpsim ‘hackt-config --1dflags‘ -lstdchpfn foo.obj

7.1 Function Descriptions

This section gives brief usage descriptions of all functions available from the standard chpsim
library.

7.1.1 Diagnostics

assert z [Function]
Run-time invariant check. If z is false, throw an exception and halt the simulator,
who is expected to produce some diagnostic message.

7.1.2 Conditionals

bcond za b [Function]
Conditional expression, for boolean rvalues. If z is true, return a, else return b.
NOTE: both expressions a and b are evaluated unconditionally.

zcond zab [Function]
Conditional expression, for integer rvalues. If z is true, return a, else return b. NOTE:
both expressions a and b are evaluated unconditionally.

rcond zab [Function]
Conditional expression, for floating-point (real) rvalues. If z is true, return a, else
return b. NOTE: both expressions a and b are evaluated unconditionally.

strcond za b [Function]
Conditional expression, for string rvalues. If z is true, return a, else return b. NOTE:
both expressions a and b are evaluated unconditionally.

select index args... [Function]
Returns expression args/index/, where index is 0-based. Throws run-time exception
if index is out-of-range.

7.1.3 Strings

strcat args... [Fucntion]
sprint args... [Fucntion]
tostring args... [Fucntion]

Stringify all args and concatenate into a single string (returned). This can be used
to convert argument types to a string. Does not include terminating newline.

32 HACKT CHPSIM Manual

strtoz str [Function]
Convert string str to an integer. Throws run-time exception if conversion fails.

strtob str [Function]
Convert string str (0 or 1) to a boolean. Throws run-time exception if conversion
fails.

strtor str [Function]

Convert string str to real (floating-point) value. Throws run-time exception if con-
version fails.

7.1.4 Input/Output

The first group of functions operate on ‘stdin’ and ‘stdout’ for interactiion with the user.
The scan input functions with throw a run-time exception upon conversion failure.

echo args... [Function]
cout args... [Function]
print args... [Function]

Prints all arguments sequentially to ‘stdout’. The print variant includes a terminating
newline, while the others do not.

printerr args... [Function]

cerr args... [Function]
Prints all arguments sequentially to ‘stderr’. The printerr variant includes a ter-
minating newline, while the others do not.

zscan [Function]

dzscan [Function]
Read an integer from ‘stdin’. Use with caution, because events in the simulator are
relatively asynchronous. The ‘d’ in the dzscan command alias is for decimal, base-10.
See also zscan_prompt.

zscan_prompt str [Function]

dzscan_prompt str [Function]
Same as zscan, but takes a prompt string str as an argument and prints it to prompt
the user.

bzscan [Function]

Reads an integer, expected in binary, containing only 0’s and 1’s. Input should exclude
any “Ob” prefix.

bzscan_prompt str [Function]
Prompts use to enter an integer in binary.

xzscan [Function]
Reads an integer, expected in hexadecimal. Input may include an optional “0x”
prefix.

xzscan_prompt str [Function]

Prompts use to enter an integer in hexadecimal.

Chapter 7: Standard Library Functions 33

bscan [Function]
Read a boolean (0 or 1) from ‘stdin’. Use with caution, because events in the
simulator are relatively asynchronous. See also bscan_prompt.

bscan_prompt str [Function]
Same as bscan, but takes a prompt string str as an argument and prints it to prompt
the user.

sscan [Function]

Reads a newline-terminated string from ‘stdin’.

sscan_prompt str [Function]
Same as sscan, but takes a prompt string str as an argument and prints it to prompt
the user.

TODO: rscan is not yet available, but is trivial to add.

I/O can also operate on file streams.

fopen file [Function]
Open file file for writing, overwrite previous contents. Subsequent calls to fprint
will still continue to append to the file. If the file stream is already open, do nothing.
Return true if the stream is opened successfully (or was already open).

fappend file [Function]
Like fopen, except file is first opened in append mode, to not overwrite existing file.
Call this before fprint to append to file.

fprint file args... [Function]
Print args to file file by appending. Throw run-time exception if opening file fails.
File streams are automatically closed and flushed upon library closing.

fclose file [Function]
Close and flush file input and output stream(s) file.

fflush file [Function]
Flush output file stream file.

fzscan file [Function]

fdzscan file [Function]

Read the next integer from input file file. Expects integer in decimal. Automatically
opens new input file stream when referenced first time.

fbzscan file [Function]
Same as fzscan, but expects integer in binary.

fxzscan file [Function]
Same as fzscan, but expects integer in binary.

fbscan file [Function]
Read the next boolean from input file file. Automatically opens new input file stream
when referenced first time.

34 HACKT CHPSIM Manual

fsscan file [Function]
Read the next boolean from input file file. Automatically opens new input file stream
when referenced first time.

The following variants automatically restart a file stream once it reaches the end.

fzscan_loop file [Function]

fdzscan_loop file [Function]
Read the next integer from input file file. Re-opens file to beginning after EOF is
reached.

fbzscan_loop file [Function]

Like fzscan_loop, but expects integer in binary.

fxzscan_loop file [Function]
Like fzscan_loop, but expects integer in hexadecimal.

fbscan_loop file [Function]
Read the next boolean from input file file. Re-opens file to beginning after EOF is
reached.

fsscan_loop file [Function]
Read the next boolean from input file file. Re-opens file to beginning after EOF is
reached.

7.1.5 Operating System Library
System-related operations are also supported.

system cmd [Function]
Execute the command cmd in the parent shell. Returns the exit status.

7.1.6 Bit-manipulation Library

The following functions are provided as fast implementations of low-level bitwise manipu-
lation functions.

parity int [Function]
Returns parity of int, true if odd-parity, false if even-parity.

popcount int [Function]
Returns the number of set bits in the binary representation of int.

clz32 int [Function]
Returns the number of leading Os in the 32b binary representation of int. (Leading
Os are in the more significant bit positions.) Result is undefined if int is 0.

ctz int [Function]
Returns the number of trailing Os in the binary representation of int. (Trailing Os are
in the less significant bit positions.) Result is undefined if int is 0.

ffs int [Function]
Returns the 1-indexed position of the first set bit in the binary representation of int.
Position is counted from the least significant bits. Returns 0 if int is 0.

Chapter 7: Standard Library Functions 35

msb int [Function]
Return the 0-indexed position of the most significant bit. Undefined for int 0.

1sb int [Function]
Return the 0-indexed position of the least significant bit. Undefined for int 0.

7.2 Library Use Example

An example project that uses some standard library functions is installed under ‘pkg-
datadir/doc/examples/chpsim-stdlib/’.

7.3 Function Renaming

This section describes ways in which one can customize the standard library. Perhaps you
don’t like the names chosen, or you would like to remap selected functions to your own
versions.

The source file for ‘stdchpfn.la’ is also installed as ‘stdchpfn.cc’ in the same location
(pkglibdir). It merely contains function registration macros that map functions defined
in ‘libstdchpfn.la’ to names used in chpsim. One can use this file as a starting point for
remapping to functions to different names, or names to different functions. To re-use the
existing underlying functions, just link your new library against ‘~-Lpkglibdir -1lstdchpfn’
(in LIBADD, by Libtool/Automake convention), which resolves to ‘libstdchpfn.la’, not
the dlopenable module, ‘stdchpfn.la’.

7.4 Library Organization

The intentional separation between ‘libstdchpfn.la’ and ‘stdchpfn.la’ demonstrates how
one can build a chpsim module on top of an existing C or C++ library without modifying
it.

Q: When passing a module to chpsim with ‘-1’ or dlopen, how does the system know
what dependent libraries to load? A: The ‘.1a’ Libtool archives encode library dependencies
for shared libraries, and (Libtool) libltdl’s 1t_dlopen automatically takes care of dependent
libraries for the user.

Command Index

Command Index

!

L 14
#
B 13

ADOTt .o 13
addpath..... ..o 15
AAVAIICE .« .\ttt 17
AAVANCE=T0 . . .t 17
ALAAS ot 14
AliASES . it 14
ASSET L it te 31
assert-queue ..., 16
ASSertn-—qUeUeooviiiiiiiii 16

bcond ... e 31
break-event 18
break-valuec.viiiiiii i 18
DSCaAN .t 33
bscan_prompt ... 33
DZSCaAN . ottt 32
bzscan_prompt 32

CAUSE + v ettt ettt 19
CA .t 14
o7 o 32
CHP_DLFUNCTION_LOAD_DEFAULT................ 23
Clz32 e 34
ToTo3 111113 o N 2 13
COUE © ottt e 32
CEZ et 34

Airs .o 15
dladdpath........ ..o 15
dlassertfunc..............l 16
dlcheckfunciiiiiiia 15
dlfuncs ... 16
ALOPEIL . . v vttt 15
dlpaths ... 15
dump-all-event-source....................... 16
dump-event............l 16
dump-event-source................... ... 16
dump-state.............o oo 16

AZSCaAN . o\ i et 32

37
dZSCan_promptt 32
E
eCho 13, 32
echo-commandsc.ouuiiiiiinn... 15
exXit ... 13
F
fappend...... ... 33
fbscan ... 33
fbscan_1oop ... 34
fbzscan........... . i 33
fbzscan_loop ...l 34
fclose ... 33
fdzscan........... ... i 33
fdzscan_loop ...l 34
fflush 33
= PP 34
fopen 33
fprint 33
fSSCAl . oot 34
£S5Can_100P .. viiii i 34
fxzscan...... ... oo 33
fxzscan_loop ... 34
fzscan ... 33
fzscan_10o0p ... 34
G
get. 16
H
help ... 13
history............... 13
history-noninteractive...................... 14
history-rerun...............ccooiiiiiiiina... 14
history-savecoviiiiiiiiiiinneonnn. 14
|
initialize.........coiiiii 17
interpret...... i 14
L
load .. 19
IS 17
18D 35

38

TLOCAUSE « vttt ettt et e et e e e 19
nowatchall-events............................ 20
nowatchall-queue............................. 20
null-event-delay............................. 17

P

Parity ... 34
Paths ... 15
POPCOUNT . ..o 34
Popd ... 15
precision................ i 13
Print ... 32
print-event-header 16
Printerr....... ... 32
pushd ... 14
PWA. .. 15
QUEUE ..ottt 16
QUIt L 13

oo o3+ o 31
REGISTER_DLFUNCTION_RAW..................... 23
TEPEAT . .\t 13
TESEL ottt 17
TUIL. o oottt e e e e e e e e e e s 18
S

AV & ittt 18
seedd8 ... 17
SELECT .o 31
show-event-breaks.............cooviiiinnin... 18
show-event-values.............ooviviinennn... 20
show-event-watches 20
show-value-breaksS..........ooviiiinunennen... 18
SOUTCE .+ vttt et e et ettt 15
Sprint ... 31
SSCAIL « v vttt e e 33
SSCAN_PIOMPt .. .vvvt i 33
step ... 18
SETCAT oot 31
Strcondoii 31

HACKT CHPSIM Manual

SErtOD .o 32
SErEOT .o 32
StrtoZ . o 32
subscribers 16
subscribers-all............ i, 16
System............. 34

Time ... e 16
timing ... 17
tostring............ . 31
BACE oot 19
trace=CloSe .. .ot e 19
trace—dump.......... ... 19
trace—-file........oiiiiii 19
trace-flush-interval 19
trace-flush-notify 19

UNALEAS ettt ittt e 14
unaliasall........coiiiiiiiiie i 14
unbreak-event i 18
unbreak-valueouviiiriin 18
unbreakall-events........... ..., 18
unbreakall-values...........ovvuiinennennnn.. 18
uniform-delayciiiiiiiiii... 17
unwatch-eventoiiiiiiianain, 20
unwatch-valuecoiuiiiiniennenann. 20
USING_CHPSIM_DLFUNCTION_PROLOGUE.......... 23

A%

watch-event 20
watch-value it 20
watchall-events...........oiriiiinninennnnnn. 20
watchall-queue............................... 19
What .. 16
WHO . ot 17
who-newlineiiiiniiinenennann. 17

Variable Index

Variable Index

-f cluster-processes.................. ...
—fdefault......... ...
-f dump-dot-struct..............o oLl
-f dump-graph-alloc...........................

-f show-delays
-f show-event-index...........
-f show—instances

39
e P 6
2 6
e S 6
E /P 6
CHPSIM_MODULE_FLAGSot 25
CHPSIM_OBJECT_CPPFLAGSciinin... 25
CPPFLAGS . . oottt e 25
O K e 25
CXXFLAGS . .ottt 25
(0306 I 15 25
HACKT_CONFIGt 25
HACKT_LIBTOOL0ttt 25

Concept Index

Concept Index

A

aliases, command oL 14
aliases, instanceo 17
argument checking................. 26
argument types..........o oo 23

B

batchmode........... 5
block. ... oo 30
bool_value_typeol 23
breakpoints.......... ... i 18
built-in commands................ 13

C

cause, events i i 19
checkpoint........ 5
checkpointing..........o ool 18
CHP . 3
CHP functions. ..., 21
chp_function_argument_list_type............... 23
chp_function_return_type................... ... 23
chpsim_dlfunction.h 22
cluster. 7
command-line oo 5
COMMANAS. . oo 13
compiling module objects...................... 22
O . 3

D

delay ... 30
delay, prefix ... 30
dependent libraries L 35
diagnostics, run-timeo oL 26
dlopen ... 15, 21, 23
dot .o 7

errors, run-time. o oo oL 26
event algorithm................................ 29
event life cycle...... ... oo 29
event ordering..............o 29
event qUeUe.oviiiiii i 16, 19
event-driven 29
event-graph....... i 7
example, installed module 26
EXECULION . . v v 29
extending simulation.............. 21
external function oL 21

41
F
ags. ..o 5
flags, general il 6
flags, graph...... 7
floating-point oo 23
function calls....... ... o i 21
functions 31
functions, external 21
general commands............ ... o oL 15
global initialization.................. 27
H
hackt-config............... ... L 22, 25, 31
hackt-libtool........ o 25
hackt-lt.mk...... ... oo 21
history ... 3
Hoare, C. AL R oo 3
I
info commands oo 16
initialization, global 27
initialization, simulation....................... 17
int_value_type......... i 23
interactive. ... 5
interactive commands.............. ...l 13
interpreter commandso i 13
introduction........... ..o i 3
L
LDFLAGS .. 31
library ... 31
library dependencies................. 35
library example........o i 35
library functions.......... oL 31
library organization..................coouaa.. 35
library pathso i 5
library, module 24
Libtoolo 24
linking moduleo il 24
loading ... 6
loading modules.......... ool 26
M
INACTOS « « v v vt ettt ettt ettt 22
INCC « ettt ettt e e e e 3

42

module ... 6, 21
module commands........... ... oo 15
module paths......... ... o 5
module, loading oL 26

@)

OPLIONS « oo 5
Options, SUMMATYvutteenn 5

P

per-event delay oL 17
Plug-in ... 21
portability....... 27
position-independent code 24
PrOompt ... oo 5

R

random delay......... ... oo 17
rational for modules............ 27
real_value_type......... ool 23
recording trace o 6
renaming library functions..................... 35
return types....... ... il 23

S

simulation commands.......................... 17

HACKT CHPSIM Manual

source paths....... ... 5
standard library ool 31
string_value_type........... ... oL 23
subscribers........ o i 16, 30

T

timing. ... 30
trace file. ... 6
tracing commands oL 18, 19
tutorial 9
type checking, run-time........ 26
types.h. ..o 23

U

unblock ... 30
unbound function............... 21, 26
uniform delay i 17
USAZE e« v v ettt ettt e e e 5

variable state......... 16
view commands 19
VPATH .. 26

watchpointso o i i 20
whole-program graph................... 7

	List of Figures
	Introduction
	History

	Usage
	Option Summary
	General Flags
	Graph Generation

	Tutorial
	Commands
	builtin commands
	general commands
	info commands
	modes commands
	simulation commands
	tracing commands
	view commands

	Extending the simulator
	CHP Function Calls
	Shared Module Creation
	Compiling module sources
	Linking module libraries

	Run-time Module Loading
	Run-time Diagnostics
	An Example
	Global Initialization
	Module Rationale

	Event-driven Execution
	Event ordering
	Timing

	Standard Library Functions
	Function Descriptions
	Diagnostics
	Conditionals
	Strings
	Input/Output
	Operating System Library
	Bit-manipulation Library

	Library Use Example
	Function Renaming
	Library Organization

	Command Index
	Variable Index
	Concept Index

