CAST to HAC Migration Guide

David Fang

left 3 December 2012 right

This document describes language and tool migration from old CAST to HAC tools.
This document can also be found online at http://www.csl.cornell.edu/ fang/hackt/cast2hac.|]
The main project home page is http://www.csl.cornell.edu/~fang/hackt/.
Copyright (©) 2007 Cornell University
Published by ...

Permission is hereby granted to ...

left 3 December 2012 right

http://www.csl.cornell.edu/~fang/hackt/cast2hac
http://www.csl.cornell.edu/~fang/hackt/

Short Contents

O 0 J O O = W N

Yt
W N = O

14

Introduction e 1
Y DeS . o e 3
Definitions. . ..o 5)
Instanceso 7
ATTayS . e 9
Connections.t e 11
EXpressionso e 13
570} 0P 15
Templateso 17
Typedefs . . oo 19
PR . 21
CHP . 25
Spec Directives . ..ot 27
Legacy Toolso 29

Concept Index . ..o e 31

Table of Contents

1 Introduction................ 1
2 Ty PeS . oo 3
2.1 Fundamental Typescoouiiiiiiiiii i 3
2.2 User-defined Types.couuiiniiii e 3
3 Definitions............... 5
3.1 POrts .o 5
4 Instances................. 7
5 AIrTays 9
6 Connections....................... ..., 11
6.1 Scalar instance connections.o.oeiiiiieeiiineann.. 11
6.2 Arrayed connections. 11
7 EXpressions....................c.cciiiiiiiiii.. 13
8 LoOPS. .. oo 15
8.1 Loop instantiations and connections........................... 15
8.2 PRS LOODS .\t 15
9 Templates.......... L. 17
9.1 Template Basics ... 17
9.2 Template Instantiations................. ... i ... 17
9.3 Default Parameters i 17
9.4 Relaxed Templates........ccooiiiiii i, 17
10 Typedefs............. .. 19
10.1 Typedef Templates.o 19
11 PRS ... 21
11.1 Loop Rules 21
11.2 Conditional Rules......... ..o 21
11.3 Loop EXpressionsoouuuuii .. 22
11.4 Rule Macrosooui e e 22
11.5 Rule Attributeso 23
11.6 Sized Literals...........c i 23

11.7 Miscellaneousoo i 23

iii

iv CAST to HAC Migration Guide

12 CHP...... . 25
12.1 Lexical ConventionS.oouiiiiiiiiiiiaeeeaaa. 25
12.2 CHP Grammarooiiiiiie et 25
12.3 New Features 25

13 Spec Directives............................... 27
13.1 Porting from CAST 27

14 Legacy Tools..................... 29
14.1 PRS Simulation............oooiiiii 29
14,2 LV S o 29
14.3 CHPSIM ... o 30

Concept Index................ 31

Chapter 1: Introduction 1

1 Introduction

The purpose of this document is to assist CAST users in migrating old sources to the HAC
language for use with the HACKT tools. This document assumes the reader is already
familiar with the CAST language and some of its tools. This guide does not cover the new
features of the HAC language; those are covered in the language reference.

Chapter 2: Types 3

2 Types

2.1 Fundamental Types
The names of the primitive types have changed. Types that correspond to compile-time
meta parameters are prefixed with ‘p’, such as pint and pbool.

Here is a summary of changes in fundmental types from CAST (first column) to HAC
(second column).

CAST HAC
node bool
N/A int
int pint
bool pbool

N/A preal

The new types preal and int are explained in the HAC language reference.

2.2 User-defined Types

For the purposes of migrating from CAST, we restrict our attention in the rest of this
document to processes, the only kind of user-defined metaclass in CAST. HAC supports
data and channel metaclasses, which have no equivalent in CAST. Chapter 3 [Definitions],
page 5, describes the changes in defining processes.

Chapter 3: Definitions 5)

3 Definitions

Definitions use the keywords defproc, defchan, and defdata. The old CAST keyword
define can simply be replaced with defproc.

TODO: write more on newer port restrictions...

3.1 Ports

In CAST, port declarations were allowed to be sparse, whereas in HAC, only dense decla-
rations are allowed.

The following CAST definitions were legal:

define foo() (node x[1..3]) { }
define bar() (node x[0..2]) { }

However, in HAC, there is no equivalent to declaring port instances that start with non-
zero indices. Note, that in CAST, the first set of parentheses in each definition are reserved
for template parameterization. Thus, the above definition of foo cannot be expressed in
HAC, whereas the definition of bar could be rewritten:

defproc bar(bool x[3]) { }

For more on dense and sparse arrays and their declarations, See Chapter 5 [Arrays],
page 9. Chapter 9 [Templates|, page 17 describes how to generalize definitions using tem-
plate parameters.

Chapter 4: Instances 7

4 Instances

CAST allowed declarations of instances to be anonymous, which would result in automat-
ically generated names such as _a_0. HAC, however, requires all instances to be named.
Anonymous instances were sometimes used to declare arrays of a particular type without
namimng the instances. (Example?)

Chapter 5: Arrays 9

5 Arrays

In CAST, the dimensions were declared between the type-identifier and the instance-
identifier. Arrays in HAC are syntactically C-style, where the dimensions of the array
follow the array’s identifier.

Sparse arrays are also supported but with different syntax. In HAC, sparse arrays are
always declared using a range expression in the indices. e.g. ‘inv x[1..1];’ declares a
sparse 1D array populated at index 1. (Yes, some of you may find this inconvenient.)

The following table shows some examples of equivalent declarations in CAST and HAC,
where inv is defined as a type.

Examples of dense and sparse array declarations:

CAST HAC meaning

inv[2] x; inv x[2]; 1D array with indices 0..1

inv[2] x, y; inv x[2], y[2]; 2 1D arrays with indices 0..1

inv[2] [3] x; inv x[2] [3]; 2D array with indices 0..1,0..2

inv x[2]; inv x[2..2]; sparse 1D array indexed 2 only

inv x[2..4]; inv x[2..4]; sparse 1D array indexed 2..4

inv x[2], x[4]; inv x[2..2], sparse 1D array indexed 2, 4 only
x[4..4];

A common pitfall is to declare sparse index of an array and pass port connections in the
same statement, such as: ‘inv w[2] (x, y, z);’. This illegal statement tries to declare an
array indexed 0..1, and connect both instances with the same port parameters. In HAC,
one cannot declare a collection and connect its ports in the same statement as in CAST,
however, one may declare a scalar instance and connect its ports in the same statement.
The proper way to instantiate and connect a sparse instance is to use a sparse range, just
like in a sparse declaration: ‘inv w[2..2](x, y, 2);’ .

Chapter 6: Connections 11

6 Connections

6.1 Scalar instance connections

CAST allowed a definition to be connected with fewer port arguments than port parameters,
assuming that the trailing ports remain unconnected externally. HAC forbids this error-
prone mismatch, and requires one to pass in blanks in place of all unconnected ports, even
trailing ports.

For example, given a defproc (define) inv with three bool (node) ports and external
nodes x, y, z, The following table shows what declaration connections are legal:

declaration CAST HAC
inv x; valid valid
inv x(Q); valid invalid
inv x(x, y, 2); valid valid
inv x(x, y); valid invalid
inv x(x); valid invalid
inv x(x, , z); valid valid
inv x(x, ,); valid valid
inv x(x, y,); valid valid

The three invalid HAC examples are invalid because the definition of inv requires exactly
three port arguments, where only fewer were given.

The above examples show a declaration with port connection in one statement. HAC
allows declarations and port connections to be decoupled, so the following examples would
be legal:

bool i, o;
inv x;
x(1, 0);
inv y;
y(@,);
y(, 0);

yC .,);

6.2 Arrayed connections

HAC forbids the declaration of an array with port connections in the same statement'. For
example, ‘inv x[4] (i, o);’ is invalid. Given an array, one should declare the array up
front and then connect the ports in a loop.

bool i[4], o[4];

inv x[4];

(;j:4:

x[J1G 3], oli1);
)

1 The rationale behind this decision is to disambiguate sparsely indexed declarations and arrayed connec-
tions. Most likely, such statements would form as the result of an error in translating from CAST.

Chapter 7: Expressions 13

7 Expressions

Expressions in HAC depart somewhat from CAST style and follow from ANSI C grammar
more closely. Here we list a few differences.

The equality operator in CAST was =, but C and HAC use ==. However, use of the
deprecated = operator is allowed if the expression is wrapped in parentheses, e.g. (x=y).

Less-than <’ and greater-than ’>’ operators now need to be parenthesized to dismbiguate
them from template parameter delimiters, See Chapter 9 [Templates|, page 17. For example,
in CAST, [X<Y => ...] would need to be re-written in HAC [(X<Y) -> ... 1.

Logical operators in CAST were & and |, but in C and HAC, they are respectively &&
and | |. This makes way for bitwise operators (on integers) & and |.

XOR (bitwise integer) is ~ in HAC.

Logical XOR (for booleans) current uses != instead of ~, however, overloading ~ might
be added back at some point.

The standard boolean and integer operations are strictly type-checked. At compile-time,
there is no implicit conversion between pbool and pint values. For example, one cannot
use an integer expression as a boolean, whereas in C, the integer is implicitly compared
against 0.

Explicit casting operators may be added in the future.

Function expressions may be added in the future.

Chapter 8: Loops 15

8 Loops

8.1 Loop instantiations and connections

In CAST, the an example of a loop statement in the meta-language might look like:
<i:N:
inv z[i];
x[i] = y[il;
>
The equivalent in HAC would look like:
(;i:N:
inv z[i..i];
x[i] = y[il;
)

The main difference is the use of parentheses instead of angle brackets and an extra
semicolon operator. Notice that the declaration of z in the loop uses an explicit range to
declare each sparse instance in the collection (Chapter 5 [Arrays|, page 9). (It is highly
recommended to keep declarations outside of loops where possible, leaving only connection
statements inside loops.)

Like in CAST, loops may be nested arbitrarily deep and may be nested with conditional
bodies.

8.2 PRS Loops

Do NOT write PRS bodies inside loops, the semantics are currently undefined. The PRS
sub-language includes a similar loop syntax, described in Section 11.1 [PRS Loop Rules],
page 21.

Chapter 9: Templates 17

9 Templates

9.1 Template Basics

CAST supported parameterized definitions and types, also known as templates. HAC sup-
ports templates using C++-like template syntax. Templates are useful for defining a family
types with highly regular differences. Such generalizations often occur in definitions whose
port sizes or implementations vary enumerably or trivially. The most notable differences
from CAST templates and HAC templates is the use of angle brackets around template
arguments and parameter declarations, and the grammatic location of the template signa-
ture!.

In CAST, a parameterized definition might look like this:
define foo(int N) (node[N] x) { }
The equivalent definition in HAC would be:

template <pint N>
defproc foo (bool x[N]1) { }

CAST and HAC alike support parameter-dependent template parameters.
define array() (int N, D[N]) { }
would be written in HAC as:

template <pint N, D[N]>
defproc array() { }

Definitions are not the only templatable entities. Section 10.1 [Typedef Templates],
page 19, discusses how typedefs can be templated in HAC.

9.2 Template Instantiations

In CAST, templates were instantiated by passing parameter values in parentheses, e.g.
‘elof (2)’. In HAC, template parameters are passed in angle brackets, e.g. ‘elof<2>’.

9.3 Default Parameters

See the HAC Language Specification.

9.4 Relaxed Templates
See the corresponding chapter of the HAC Language Specification document for more de-
tails. TODO: texinfo document link.

Relaxed templates allow certain parameters of a type template to vary within an aggre-
gate collection (with the same base name).

Update: this has been implemented in the compiler.

1 This originates from C++ template syntax.

Chapter 10: Typedefs 19

10 Typedefs

Type aliases or typedefs were not supported in CAST, but are worth mentioning as a new
feature of HAC. Like in C, typedefs are a mechanism for giving user-defined names to an
existing type. (TODO: discuss the benefits of style.) If one really wanted to use node and
bool as the same type, one could write: ‘typedef bool node;’ and use node interchangeably
with bool.

The real benefit is being able to bind definitions templates to new definitions that just
forward template arguments to underlying types.

In the library ‘channel .hac’, we see the following example:

template <pint N>
defproc elof (bool d[N], e { ... }

typedef elof<2> elof2;

This declarations defines type elof2 to be an alias to the complete type elof<2>. In
CAST, elof(2) and elof2 are different definitions and hence, could not be equivalent
types. Connecting them required connecting their public port members, which was an in-
convenience when mixing template types with non-template types. More common examples
can be found in the library ‘env.hac’.

10.1 Typedef Templates

Typedefs themselves may be templated, as best illustrated by the following example:

template <pint N, M>
defproc matrix(bool x[NJ[M]) { ... %}

template <pint L>
typedef matrix<1l, L> row;

row<3> a_row_of_length_3;

template <pint H>
typedef matrix<H, 1> col;

c0l<3> a_col_of_height_3;

template <pint N>
typedef matrix<N, N> square;

square<2> a_2x2_square_matrix;

The typedef template feature is useful for binding selected parameters of highly gener-
alized template definitions to conveniently reduce the number of parameters.

Q: Can typedef templates be defined with default parameter values?

Chapter 11: PRS 21

11 PRS

The syntax for normal production rules in the PRS language is the same as in CAST and
HAC. See the PRS chapter of the Language Reference ‘hac.pdf’.

(Look at examples in the source ‘test/parser/prs’!)

11.1 Loop Rules

In CAST, loops of rules could be written like:
<i:N:
“x[i] | "z > yl[il+
>
The enclosing loop syntax is slightly different in HAC. The above example would be
re-written as:
(:1:N:
“x[i] | Tz > y[il+
)
Again, rule loops may be nested arbitrarily deep. The notation :N: is also equivalent to
:0..N-1:.
PRS-bodies may now appear inside instance-scope loops. The previous example could
also be written as:
(;1i:N:
prs {
“x[i] | “z => y[il+
}
)

11.2 Conditional Rules

In CAST, conditional production rules could be written inside PRS bodies as follows:

prs {

[pred —>
X => y-

]

}

If the predicate pred evaluates true during the unroll compile phase, then the body is
processed, otherwise it is skipped. In HAC, the syntax remains unchanged apart from the
syntax of PRS expressions in the predicate. HAC also allows an optional else clause in the
conditional body:

[pred ->
X => y-
[] else —>
zZ => y-

]

22 CAST to HAC Migration Guide

where in CAST, one had to explicitly write the predicates complement in a separate condi-
tional to achieve else-semantics.
In CAST and HAC, conditional PRS bodies could appear inside instance-level condi-
tionals and loops, such as:
[pred ->
prs {

}
]

Conditional bodies and loops in the PRS may be nested inside each other arbitrarily deep.

HAC conditionals also support sequential else-if constructs and else-clauses. For exam-
ple,
[exprl ->
[1 expr2 ->
[] expr3 ->
[1 else —>
]
Only the first clause in the sequence with a true guard will be unrolled and expanded.
If none are true, then all clauses are skipped. The else clause is optional.

11.3 Loop Expressions

In CAST, one could generalize an operator expression in the following manner:
<&i:N: x[i] > -> y-
The LHS expression is the conjunction (AND) of nodes x[0] through x [N-1]. HAC also
provides an equivalent construct:
(&:i:N: x[i]) -> y-
The other operator which may be used in a loop expression is | (OR).

NOTE: expression loops whose range is empty (e.g. i:0:) are yet undefined, and the
current compiler implementation rejects them at unroll time.

11.4 Rule Macros

Please read this section carefully.

Macros in PRS may be shorthand for other expanded rules or they may mean something
different that isn’t expressible in the PRS base language. CAST provided some built-
in macros into its PRS language, which have been relocated into HAC’s spec language
(Chapter 13 [Spec Directives|, page 27). For example, given ‘exclhi(x,y)’ in CAST-PRS
(not to be confused with CAST-spec’s exclhi), the result of cflat would direct prsim to
force nodes {x,y} to be exclusive high at all times. Namely the exclhi, excllo PRS macros
have been renamed as mk_exclhi and mk_excllo spec directives. Q: were there any other
PRS macros in CAST?

HAC has added support for emulating unidirectional pass-gates: passn and passp. The
interpretation of these macros is tool-dependent.

Chapter 11: PRS 23

Developers may define their own PRS macros by following the examples in the source
code. Generalized macros also support a syntax for taking parameter values as arguments
in addition to instance references. (We refrain from getting into that for this document.)

11.5 Rule Attributes
(I don’t know the grammar for rule attributes in CAST.) In HAC-PRS, production rules
may be tagged with an arbitrary number of attributes.
The most common example is the after delay attribute, which was written in CAST:
after 100 p -> g+
which would now be written in HAC:
[after=100] p -> g+

Attributes appear as a semicolon-delimited, square-bracket-enclosed list of key-value
pairs prefixing the rule. An example of multiple attributes:

[after=100;weak=1] p -> g+

Attributes that appear before a loop-enclosed rule will apply to all iterations of the looped
rule. The expressions in attributes may be parameter-dependent or induction-variable de-
pendent, resulting in different values per iteration.

11.6 Sized Literals

Status: supported in syntax, but not used in any back-ends yet.

11.7 Miscellaneous

The HAC language no longer supports the env sub-language.

Chapter 12: CHP 25

12 CHP
The CHP language, based on Hoare’s CSP, is slightly different in HAC than in CAST.

12.1 Lexical Conventions

In HAC, 1% is a token for “end probabalistic selection,” thus, if the dividend of a modulus
expression is indexed (ending with a 1), then an extra space is required. For example,
‘x[1]%2’ must be written as ‘x[i] %2’.

12.2 CHP Grammar
Nondeterministic selections are delimited by : in HAC, whereas they were delimited by |
in CAST.

In CAST, send and receive actions were written as: ‘X!'x’ or ‘Y!z’, but in HAC, send and
receive arguments must be enclosed within parenthesis like function call arguments: ‘X! (x)’
or ‘Y!(z)’. Rationale: syntactic consistency and disambiguation with the concurrency
operator (comma).

HAC supports receive actions that do not write to any variables. ‘Y?’ acknowledges
channel Y without writing its values.

12.3 New Features

Compile-time meta-parameter repetitive expansions: see the HAC Language documenta-
tion’s CHP chapter.

Includes loops for concurrency, sequence, and selection statements.

Chapter 13: Spec Directives 27

13 Spec Directives

The spec sub-language in HAC is a generalized version of the spec bodies in CAST. See
the SPEC language chapter in the ‘hac.pdf’ language reference.

Spec directives may be parameterized in HAC, and arguments may be passed in groups.

13.1 Porting from CAST
This section describes some common uses of spec-directives in migrating from CAST to
HAC.

CHECK_CHANNELS production rules may be replaced with exclhi and excllo directives,
which are used by hacprsim for built-in checking of mutual exclusion at run-time.

Forced exclusive high/low rings, which used to be inside PRS bodies, were declared as
exclhi and excllo. In HAC, they are now the mk_exclhi and mk_excllo spec directives.

Chapter 14: Legacy Tools 29

14 Legacy Tools

The old CAST tools all started with a source processor called cflat which translated top-
level instances into a text stream of the flattened representation to be fed into subsequent
tools in the toolchain. In this section, we describe how to migrate away from some of the
tools or use the HAC front-end as a backward-compatible replacement for cflat.

The replacement, hackt cflat or hflat, features options similar to those of the original
cflat. Instead of running ‘cflat -<mode> <castfile>’ to produce flattened output, one
now can now run ‘hflat <mode> <objfile>’; where objfile is a compiled HAC object file.
For example, ‘cflat -prsim foo.cast’ would now be run as ‘hflat prsim foo.haco’.

Running hflat with no arguments will produce a list of the various present modes and
format flags available as command-line options. All the formats used by the legacy tools
come as named presets. Further fine-tuning of the output format can be controlled by
individual ‘-f <flag>" command-line options.

14.1 PRS Simulation

To produce production rules suitable for simulation with the old prsim simulator, simply
invoke: ‘hflat prsim <objfile>’, where objfile contains compiled top-level instances and
definitions. If the object file is not already created and allocated, the flattener will automat-
ically do so (possibly catching and reporting errors from the later compile phases) before
producing the flattened output. The flattener produces a list of all instantiated production
rules and connections in human-readable text, which can be redirected to a file or piped
straight into the old prsim.

There is also a completely rewritten production rule simulator named (you guessed it)
hackt prsim, or just hacprsim. It emulates the behavior of the old prsim and provides
new features. There (is, will be) a separate document for the new version, coming to a
documentation directory near you. Very little documentation is required because there is a
help system built into the program. A list of all commands with one-line descriptions can
be browsed by running ‘hacprsim -h’ with no other arguments. In the interpreter, help for
any command or category can be viewed by typing ‘help <command>’ at the prompt.

14.2 LVS

There was once a wrapper script named cast2lvs which flattened a single instance of a
given type in the top-level, ignoring all other top-level instances. This is particularly useful
for being able to LVS definitions and cells hierchically from the leaf-cells up, facilitating
efficient layout verification. The new mechanism to emulate cast2lvs is to use: ‘hflat
lvs -t <type> <objfile>’, where type is the name of the complete type (with template
arguments, if applicable), and file is the object file containing the compiled definition to
unroll. The object file need not contain any top-level instances, which means it does not
need to be unrolled. Top-level instances are simple ignored with the ‘-t type’ option is
used. Recommendation: redirect the resulting output to a ‘.1lvsprs’ file or pipe it straight
into the old 1vs program.

30 CAST to HAC Migration Guide

14.3 CHPSIM
For the CHP simulator, consult the ‘hacchpsim.{info,pdf,ps}’ manuals.

Concept Index

31

32

Concept Index

A

anonymous instances.oooiiiiiia. 7
AITAYS - o e et ettt et 9
attributes in PRS.........l 23

B

bool (CAST) ... 3

CAST .. 1
cast2lvs ... 29
cflat. ... 29
CHECK_CHANNELS 27
chpsim ... 30
conditional rules..................... 21
CONNECHIONS . ..ottt 11

D

default parameters.............. ..., 17
definitions i 5
dense arrays. ...l 9

E

exclhi ... 27
excllo ... 27
EXPIESSIONS - . oot 13

F

HAC 1
HACKT .. 1
hacprsim............ i 27, 29
hflat. ... 29

INSEANCES . .ottt e 7
instances, named i 7
int (CAST) .o 3
introduction 1

L

legacy tools......... ... i 29
loop connection................ i 15
loop expressionso 22
loop instantiation............. ... ool 15

looprulesin PRS............. .ol 21

CAST to HAC Migration Guide

LOOPS « oo 15
loops, nestedco i i 15
VS 29

M

macros in PRS 22
mk_exclhi 27
mk_excllo 27

N

nested loops.........c i 15
node (CAST) 3

PbOOL. . 3
PInt .o 3
port connection........... o ool 9
preal ... 3
PRS . 21
PRS attributes ... 23
PRS conditionalso 21
PRS expression loops..........ccoooiiiiiin 22
PRSlooprules............oooiiiiiiiiit. 21
PRS 100PS . .. 21
PRSmacros.........coooiiiiiiii i 22
PRS rule attributes............ 23
PRS rule macros ... 22
PISIM . .o 27,29

relaxed parameters 17
relaxed templates..............ol 17
rule sizing 23

S

scalar connections i i 11
sized literals...........c i i 23
sizing of rules........ oL 23
SPATSE ATTAYS .« v v voe ettt te ettt iiee e 9
spec directives........... i 27
structure types i 3

T

template default values........................ 17
template instantiation, 17
templates. ... 17
typealias....... ... i 19
typedef. o 19
typedef templates................ i 19
DY PES 3

	Introduction
	Types
	Fundamental Types
	User-defined Types

	Definitions
	Ports

	Instances
	Arrays
	Connections
	Scalar instance connections
	Arrayed connections

	Expressions
	Loops
	Loop instantiations and connections
	PRS Loops

	Templates
	Template Basics
	Template Instantiations
	Default Parameters
	Relaxed Templates

	Typedefs
	Typedef Templates

	PRS
	Loop Rules
	Conditional Rules
	Loop Expressions
	Rule Macros
	Rule Attributes
	Sized Literals
	Miscellaneous

	CHP
	Lexical Conventions
	CHP Grammar
	New Features

	Spec Directives
	Porting from CAST

	Legacy Tools
	PRS Simulation
	LVS
	CHPSIM

	Concept Index

